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Abstract
Aim: Forest herbs might be unable to track shifts in habitat suitability due to rapid 
climate change and habitat fragmentation. In this study, we quantified the role of 
dispersal limitation and the potential mitigating effect of large-scale reforestation on 
the redistribution of the herbaceous forest plant species Primula elatior under climate 
change.
Location: Europe.
Methods: High resolution (100 m) landscape-scale and macro-climatic variables were 
combined to predict range-wide habitat suitability using Maxent. Dispersal limitation 
was modelled, based on isolation-by-resistance (IBR) principles through integration 
of circuit theory and genomic data, to assess patch accessibility and metapopulation 
stability under climate change. Large-scale reforestation was evaluated as a potential 
mitigating strategy by incorporating a land use change scenario into the distribution 
and dispersal models.
Results: Landscape-scale variables contributed significantly to the distribution 
of P. elatior (78.33%) and to the accuracy of our model (AUC = 0.81). Isolation-by-
resistance (R2

cond = .92) was driven by land use (45.5%), distance from rivers (36.4%) 
and elevation (18.2%). It was estimated that 46.4  ±  13.9% (mean  ±  SD of climate 
change scenarios) of the total distribution area would be lost due to climate change 
by 2050 and an additional 15.6 ± 1.7% (mean ± SD) of the distribution would not be 
accessible through migration. The median latitude of the patch distribution shifted 
183.2 ± 34.8 km (mean ± SD) northwards and 58.1 ± 9.3 km (mean ± SD) to more 
maritime regions. The patch accessibility was low in these regions and the metapopu-
lation stability decreased considerably in the south of the distribution. Reforestation 
mitigated 54.1  ±  18.2% (mean  ±  SD) of the accessible distribution area loss and 
49.5 ± 4.2% (mean ± SD) of the decrease in metapopulation stability.
Main conclusion: To alleviate the loss of the accessible distribution area of P. elatior 
under climate change, it will be required to integrate climate mitigation strategies 
(RCP 2.6), range-wide afforestation, restoration of ecological connectivity and fo-
cused assisted migration to newly available habitat.
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1  | INTRODUC TION

Global temperature and precipitation patterns are rapidly chang-
ing and are expected to severely affect the distribution of many 
plant species (Thuiller et al., 2005). Land temperatures in different 
European regions are projected to increase further by 1.4 and 4.2℃ 
under Representative Concentration Pathway (RCP) 4.5 scenario 
and by 2.7 to 6.2℃ under the RCP 8.5 scenario (by 2071–2100, 
compared to 1971–2000) (European Environment Agency,  2020). 
Furthermore, climate models have shown a high probability of in-
creasing intensity and duration of droughts by the end of the century 
(Cook et al., 2020). As a consequence, a general latitudinal range shift 
of plants is expected from south to north (Lenoir & Svenning, 2015).

Europe is among the most forest-rich regions in the world, with 
forest covering 34% (EU27) of its total land area. However, forests and 
their understorey vegetation are heavily impacted by anthropogenic 
influences, increasing their sensitivity to global changes (European 
Commission,  2011). The understorey in temperate forests is often 
species-rich, provides food and shelter for many other organisms and 
mediates ecosystem processes such as tree regeneration, nutrient cycling 
and evapotranspiration (Landuyt et al., 2019). Forest herbs require very 
specific habitat conditions and are often highly dispersal limited. Many 
forest herbs will therefore be unable to track climate-induced shifts in 
their habitat distribution (Honnay et  al.,  2002). In-depth modelling of 
how global change drivers affect specific forest herbs on a local, regional 
and continental scale have the potential to guide mitigation strategies to 
safeguard the diversity and functioning of temperate forests. However, 
integrated modelling approaches that predict changes in the habitat dis-
tribution of forest herbs under global change, and at the same time assess 
dispersal routes are challenging and require improved predictive capacity.

Species distribution models (SDMs) have provided valuable in-
sights into range shifts of certain plant species under climate change 
scenarios (Guisan & Thuiller, 2005). Yet their accuracy can be limited 
because input data often do not cover the entire current extent of 
a species´ range and because predictions have too coarse resolu-
tions. Furthermore, inferences in terms of local extinction and col-
onization are generally based on range shifts alone (Chave,  2013; 
Fordham et al., 2012; Guisan et al., 2017). To reliably use SDMs for 
biological conservation, ecological restoration and impact mitigation, 
it is necessary to use a predictor resolution and response accuracy 
which accurately reflect the species’ ecological niche breadth (Connor 
et al., 2018), ideally covering its whole range (Lembrechts et al., 2018; 
Thuiller et al., 2015). This is especially true for habitat specialists such 
as herbaceous forest plant species, where the potential for establish-
ment is determined by a complex interplay between biotic and abiotic 
interactions. Integrating landscape-scale variables that partly cap-
ture topoclimatic processes, such as fine-scale topography (Lassueur 
et al., 2006), land use classes (Sirami et al., 2017) and the presence of 

riparian zones (Moore et al., 2005), in SDMs may therefore consider-
ably increase their accuracy (Clerici et al., 2013).

Apart from their specific habitat requirements, many forest 
herb species are also known to be strongly limited in their disper-
sal, hampering the colonization of new suitable habitat in areas 
where habitat fragmentation has surpassed a critical level (Ehrlén 
& Eriksson,  2000). To accurately assess whether habitat fragmen-
tation impedes future range expansion, it is essential to assess the 
dispersal potential between currently occupied habitat patches 
and future suitable habitats (Bateman et al., 2013; Franklin, 2010). 
Recent advances in dispersal modelling allow for assessments of 
species-specific dispersal modes through genetic optimization of 
landscape connectivity (Peterman et al., 2019). Optimization meth-
ods rely on the expected relationship between landscape connec-
tivity and genetic distance for selecting the most likely dispersal 
scenario. Whereas these optimization methods have successfully 
been applied to animal populations (Littlefield et al., 2017; Maiorano 
et  al.,  2019), they have rarely been used for habitat connectivity 
analysis in plants (Dickson et al., 2019). This is remarkable, because 
the importance of seed dispersal limitation in mediating range shifts 
is well known for specialist plant species (Ehrlén & Eriksson, 2000; 
Honnay et al., 2002; Skov & Svenning, 2004). Furthermore, accurate 
dispersal modelling of plant species is important in order to guide 
mitigation strategies such as assisted migration (Lunt et al., 2013) and 
connectivity restoration (Krosby et al., 2010) in the coming decades.

Changes in forest cover and composition will affect understo-
rey habitat availability and may have a large impact on the dispersal 
and colonization potential of forest herbs undergoing climate change 
(Canadell & Raupach, 2008; Millar et al., 2007). Furthermore, future 
changes in forest cover and composition will directly affect habi-
tat availability for understorey species (Nieto-Lugilde et al., 2015). 
Reforestation policy targets, as set by the European Commission, and 
natural regeneration on abandoned farmland are therefore expected 
to strongly affect the extent of species distribution shifts induced 
by climate change (European Commission, 2019; Guo et al., 2018). 
Although some studies have examined climate change effects on af-
forestation success (Duque-Lazo et al., 2018) and tree species distri-
butions (Buras & Menzel, 2019), we are unaware of any studies that 
have integrated afforestation efforts in modelling the distribution of 
forest understory species under climate change scenarios.

Primula elatior was used as a study case because it is widespread 
and highly representative for other forest herbs from alluvial decid-
uous forests. Due to its specific habitat requirements, intolerance 
to desiccation, absence of seed dispersal mechanisms and self-
incompatibility, it may be specifically sensitive to climate change and 
habitat fragmentation (Honnay et al., 2002; Taylor & Woodell, 2008). 
Here, we aimed to assess how climate change and afforestation/re-
forestation efforts would affect the amount of accessible habitat for 
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the forest herb P. elatior. To this end, we defined four research ob-
jectives (RO) which structure this study. First (RO I), we developed a 
habitat suitability model for P. elatior by integrating landscape-scale 
and macro-climatic variables, and projected its distribution under cli-
mate change by 2050. Second (RO II), we quantified the proportion 
of suitable habitat that is accessible through dispersal and long term 
migration, using circuit theory and genetic data. Third (RO III), we 
analysed shifts in the distribution of suitable habitat and assessed 
their implications for habitat accessibility and metapopulation stabil-
ity under climate change by 2050. Finally (RO IV), we quantified the 
mitigation effect of envisioned continental large-scale reforestation 
on the future distribution of P. elatior.

2  | METHODS

2.1 | Study system

Primula elatior subsp. elatior (in the Primulaceae family) is a European 
riparian forest species, with the native distribution spanning from 
the north of Denmark and southern Sweden to the Pyrenees. In 
western France, the species is rare, and in Great Britain, the species 
is native in a few locations only. In the east, populations occur in the 
Baltic States, Poland and the north-eastern Carpathians in Ukraine 
and Romania (Taylor & Woodell, 2008). Successful introductions of 
P. elatior have occurred in Norway, which could suggest that the cur-
rent range is restricted by dispersal limitation and not by the cold 
edge of its thermal niche (collected samples; Alm & Often, 2009).

Primula elatior typically occurs in sub-Atlantic and medio-
European oak or oak-hornbeam forests of the alliance Carpinion bet-
uli and to a lesser extent in alluvial forests with European alder and 
ash of the alliance Alno-Padion (Hennekens et al., 2010; Leuschner 
& Ellenberg, 2017). The species is known to have limited coloniza-
tion capacity of newly established forests (Jacquemyn et al., 2002). 
Seeds fall from elevated stems and dispersal is generally driven 
by either gravity (barochory) or wind (rolling anemochory; Endels 
et  al.,  2004). Occasionally, however, long-distance dispersal can 
be achieved through seed herbivory, mainly by roe deer (endozo-
ochory), or through seeds being washed downslope from riparian 
habitats (hydrochory; Vittoz & Engler, 2007).

2.2 | Species occurrence data and pseudo-
absence generation

From a total of 26 species occurrence databases (Appendix S1), we 
selected occurrences that were (a) only recently documented (post-
2000), (b) of high precision (<100 m accuracy), and (c) from natural 
environments (no garden escapes or introduced individuals). The re-
sulting 24,267 records were partitioned into spatially independent 
training and validation data, with a distance of at least 5 km between 
occurrences of the training dataset and occurrences of the valida-
tion dataset. Furthermore, each dataset was spatially thinned with a 

10 km minimum distance between observations to avoid spatial au-
tocorrelation. This distance was based on semi-variograms for each 
explanatory variable (Aiello-Lammens et al., 2015; Veloz, 2009). This 
resulted in seven training and validation subsets of 1,579 and 790 
occurrences, respectively (see Figure 1 for an overview of the work-
flow). Filtering of available true absences (<100 m coordinate accu-
racy and post-2000 observation) resulted in a spatially biased dataset 
(Chytrý et al., 2016), and therefore, a presence-background approach 
was used. Background data were generated with spatial profiling (or 
geographic restriction) to (a) avoid false negatives, (b) exclude back-
ground data from areas outside of the species range, and (c) increase 
sensitivity (or the true-positive rate) of the modelling procedure 
(Barbet-Massin et  al.,  2012). More specifically, a spatial profiling 
range was determined ranging from 2.5 km distance from observed 
occurrences to 24.3 km, which was the maximum observed distance 
between occurrences in Europe. Spatially independent (10 km) back-
ground points were generated with 50%, 100% and 200% (maximum 
amount of spatially independent locations) of the presence dataset 
to test the effect of presence/background weighting on model per-
formance (Barbet-Massin et al., 2012). Based on the area under the 
ROC curve (AUC) and the corrected Akaike information criterion 
(AICc), model performance peaked at 200% background points and 
all consecutive models were constructed accordingly. For validation 
of this approach, true absences were spatially thinned and spatially 
profiled on the extent of the Netherlands to test the accuracy of the 
presence-background modelling procedure.

2.3 | Explanatory variables

A total of 13 independent variables (Spearman r < .6) were included at 
100 m resolution in the modelling procedure (Table 1; Appendix S2). 
Land use, elevation, aspect, degree of soil wetness and a river net-
work map (Copernicus Land Monitoring Service et  al.,  2020) were 
included to model the effect of landscape-scale properties on the 
current species distribution (Lembrechts et  al.,  2018). The degree 
of soil wetness was based on the Water Wetness Probability Index 
(WWPI) and was determined independently from the vegetation 
cover. The river network database was transformed to an Euclidian 
distance raster, representing the distance of each cell (in metres) 
to the river features, and distances were log10-transformed. The 
landscape-level tree cover (originally at 1 km2 resolution) of the three 
most important co-occurring tree genera (Quercus, Carpinus, Fagus) 
were also included (Brus et al., 2011). Physical properties of the soil 
(n = 5; Hiederer, 2013) were reduced in dimensionality with a Principal 
Component Analysis (PCA) to obtain two independent soil Principal 
Components (Table 2 of Appendix S2). To assess the trade-off be-
tween model complexity and variable importance, we used a back-
wards selection procedure based on AICc (Appendix S2). Selection of 
bioclimatic variables (WorldClim version 2.1; Fick & Hijmans, 2017) 
was based on the predictive capacity (AUC/AICc) of non-collinear 
combinations (r  <  .6; 1,077 models; Appendix  S3), and three eco-
logically relevant and independent climatic variables were included 
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in the final model: temperature seasonality (Bio 4), precipitation of 
wettest month (Bio 13), and the precipitation of warmest quarter (Bio 
18). Climate data, landscape-level tree species cover and soil data 
were disaggregated to 100 m resolution with bilinear interpolation 
to match the resolution of the other datasets (Fordham et al., 2012).

2.4 | Model building and projections

Nine distinct algorithms and ensemble models were evaluated on 
the extent of the Netherlands and a maximum entropy algorithm 

(Maxent) yielded the best results based on AUC. True absence 
Maxent models were compared with a presence/background strat-
egy on the same extent and the latter performed better based on 
AUC and AICc (Appendix S4). The selection of nonlinear functions of 
environmental variables (features) and the settings of the regulariza-
tion multiplier, which controls overfitting/complexity by regulating 
the chosen feature class intensity, are known to have a strong ef-
fect on Maxent predictions and should be carefully chosen (Merow 
et  al.,  2013). Parameterization of feature classes (linear, product, 
quadratic, hinge and threshold) and regularization multipliers were 
evaluated by ranking models (115 different parameter settings 
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tested on one data partition) according to AUC and AICc (“ENMeval 
v. 0.3.1”; Muscarella et al., 2014; Appendix S4). This parameter op-
timization method integrated the model complexity, inherent to the 
distinct features, and a combination of linear, product and threshold 
features were selected with a default (1) regularization multiplier as 
optimal parameters. The use of a default regularization multiplier is 
justified because we had a large amount of records, a diversity in the 
environmental data over the whole range, and less complex features 
than the default (Phillips & Dudík, 2008).

The resulting Maxent models were used to predict the relative 
suitability (presences relative to background data) for P. elatior in 
Europe for the current and projected climate (RO I), and for a forest 
restoration scenario (see section “Assessing mitigation effects of en-
visioned large-scale afforestation”). Bioclimatic projections accord-
ing to three greenhouse gas scenarios in 2050, namely RCP 2.6, RCP 
4.5 and RCP 8.5, were used to analyse future biogeographical shifts 
of the species distribution. RCP variables were based on averages 
from 11 general circulation models (Appendix S2).

Maxent's relative suitability output was transformed with a com-
plementary log-log (cloglog) function to an estimate of occurrence 
probability ranging between 0 and 1 (Fithian et  al.,  2015; Phillips 
et al., 2017), and the resulting projections based on the 7 subsam-
ple datasets were averaged to obtain robust results. To determine 
a habitat suitability threshold for delineating suitable patches in an 
otherwise unsuitable landscape matrix (Nenzén & Araújo, 2011), we 
used the average projected probability (meanPred; see Appendix S5 
for explored alternatives) of all 24,267 occurrences in our dataset 
(0.714; 95% CI [0.712, 0.715]). The meanPred threshold has been 
advised to reduce the false positive rate when species prevalence 

is moderate or high, which is essential to model dispersal between 
patches (Liu et al., 2013). All habitat above this threshold was consid-
ered suitable and patches were delineated based on connected cells 
according to the 8-neighbours rule (queen's case) with “landscape-
metrics v. 1.5.1” (Hesselbarth et al., 2019). Thus, habitat patches are 
here defined as areas of suitable habitat consisting of contiguous 
cells with a minimum habitat suitability.

To validate the binary classification of patches, the true skill 
statistic (TSS) was calculated, which is based on the true-positive 
rate (TPR; within the habitat patch or an edge raster cell) of all oc-
currences and the true negative rate of a matching random sample 
of 24,267 absences (mean of 10 random absence generations). The 
TSS (TPR+TNR-1) ranges from −1 to 1, with values <0 indicating a 
performance which is no better than random (Allouche et al., 2006). 
Preprocessing was performed with the R package “raster v.3.0-7” 
(Hijmans, 2019), models were trained and projections obtained with 
“Maxent v. 3.4.3” (Phillips et al., 2020) using the R package “dismo 
v.1.1.4” (Hijmans et al., 2017), and evaluation was performed follow-
ing Warren & Seifert (2011) with the R package “ENMeval v0.3.0” 
(Muscarella et al., 2014; Appendix S5) on the infrastructure of the 
Flemish Supercomputer Center (VSC; FWO, 2020).

2.5 | Modelling dispersal and migration events to 
determine the accessible area

We modelled potential dispersal and migration events based on 
circuit theory, which describes the landscape as a resistance ma-
trix (cells on a geographical raster grid) and which determines mul-
tiple pathways of low resistance between suitable habitat patches 
(nodes). This measure of isolation between pairs of nodes was then 
expressed as effective resistance (McRae et al., 2008). Dispersal was 
here defined as seed movement between habitat patches within a 
specific scenario, thereby allowing functional connectivity between 
habitat patches. Migration was defined as repeated seed dispersal 
events across successive generations, thereby allowing functional 
connectivity between a current habitat patch and a habitat patch 
that will be present in the future (2050). The future patch acces-
sibility was determined by both the potential for migration and the 
potential for dispersal between projected habitat patches (future 
isolation). The current patch accessibility was determined only by 
the dispersal potential (current isolation) under the assumption that 
the current projected distribution is stable and not yet affected by 
climate change. Because land use, distance to rivers and elevation 
were expected to affect seed dispersal probabilities in P. elatior, 
these variables were used to define the resistance matrix. For ex-
ample, rivers were expected to facilitate dispersal and thus decrease 
the effective resistance, while anthropogenic land use and high el-
evation (upslope) was expected to increase the effective resistance. 
For elevation, the assumption was made that low resistance matrix 
values at low elevation were a proxy for downhill dispersal, and high 
resistance matrix values at high elevation were a proxy for uphill 
dispersal.

TA B L E  1   Mean variable contribution (± standard error) and 
variable permutation importance in the species distribution models 
(n = 7) of Primula elatior in Europe. CLC is the Corine land cover 
and WPI is the wetness proximity index as determined by the 
Copernicus Land Monitoring Service. Soil PC (1 and 2) are the 
first and second principal component axis from the soil physical 
properties as determined in Appendix S2

Feature Contribution
Permutation 
Importance

CLC 54.05 ± 0.97 44.81 ± 1.08

Temperature seasonality 17.73 ± 0.48 17.81 ± 0.59

River distance (log10-transformed) 13.79 ± 0.59 10.53 ± 0.24

Elevation 4 ± 0.33 8.64 ± 0.47

Precipitation of Warmest Quarter 3.45 ± 0.1 7.58 ± 0.24

Carpinus 1.9 ± 0.26 2.41 ± 0.32

Soil PC2 1.18 ± 0.15 1.34 ± 0.21

Quercus 1.09 ± 0.26 1.27 ± 0.26

Soil PC1 0.82 ± 0.09 2.09 ± 0.21

Fagus 0.71 ± 0.16 1.51 ± 0.22

Precipitation of Wettest Month 0.49 ± 0.07 0.95 ± 0.09

WPI 0.47 ± 0.13 0.53 ± 0.2

Aspect 0.32 ± 0.08 0.53 ± 0.09
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Because effective resistances are sensitive to user-specified re-
sistance matrix values assigned to each environmental variable, a 
genetic optimization algorithm was applied to approximate the true 
cost of dispersal (see Appendix S6 for details on DNA sequencing 
and Appendix  S7 for a detailed description of the genetic optimi-
zation of the resistance matrix). Briefly, this procedure determines 
the isolation by resistance (IBR) and is based on the expectation that 
a high effective resistance increases the genetic differentiation be-
tween populations under migration-drift equilibrium (McRae, 2006). 
Specifically, we sampled leaves from 10 individuals in each of 29 P. 
elatior populations along a latitudinal gradient from southern France 
to Northern Denmark. Only large, connected habitats were sampled 
to exclude populations in non-equilibrium states. We used single 
nucleotide polymorphism (SNP) skimming (Wessinger et  al.,  2018) 
to construct SNP matrices containing 406 pairwise Nei's genetic 
distances (Nei, 1978). The SNP matrix was constructed with the R 
packages “adegenet v.2.1.2”, “vcfR v.1.8.0”, “tidyverse v.1.2.1” and 
the genetic distances were calculated with “stAMPP v.1.6.1”. These 
29 populations captured variation in land use and river distance but 
not in elevation. To nevertheless account for elevation as a potential 
dispersal-inhibiting factor, we retrieved genetic data from Konečná 
et al. (2019), who evaluated colonization of subalpine habitats in cen-
tral European mountains by P. elatior. This dataset contains a pair-
wise Fst matrix for 16 populations or 120 pairwise distances and was 
used to separately optimize the resistance matrix of elevation. The 
genetic optimization (232 models; Appendix S7) was based on the 
log-likelihood rank of standardized maximum-likelihood population-
effects (MLPE) mixed models, using genetic distance as the response 
and log10-transformed effective resistance as the predictor (Clarke 
et al., 2002). Additionally linearized partial Mantel tests were used, 
removing the effect of log10-transformed Euclidean distance from 
the log10-transformed effective resistance (Cushman et al., 2006). 
The distinct genetically optimized resistance matrices (land use, 
distance to rivers and elevation) were parameterized by iteratively 
assigning weights (from 0.1 to 1) to each resistance matrix (110 mod-
els), resulting in a new resistance matrix which was then used for 
connectivity analysis (Koen et al., 2012). The resistance matrices for 
the projected forest restoration scenarios were adapted to reflect 
the genetically optimized land use resistance matrix (Appendix S7). 
Effective resistances were calculated using “Circuitscape v5.5.5” 
(McRae & Shah, 2011) in “Julia v1.3.1” (Anantharaman et al., 2019) 
on the Flemish Supercomputer infrastructure (VSC; FWO,  2020). 
Resistance matrix optimization and MLPE models were executed 
with the R packages “ResistanceGA v.4.0-14” (Peterman, 2018) and 
Mantel statistic derivatives were constructed with “Vegan v.2.5-5”.

We modelled whether dispersal between habitat patches could 
take place as a function of the effective resistance between them. 
Because suitable habitat patches can either function as sources for 
further dispersal (stepping stones or source patches) or dispersal 
dead-ends, we also quantified the within-patch dispersal potential for 
each suitable patch based on the effective resistance between patch 
edge and patch centroid. Habitat patches where within-patch dis-
persal from edge to centroid is highly unlikely (dispersal dead-ends) 

were then excluded as source patches or stepping-stones. Migration 
potential was then quantified based on the effective resistance be-
tween currently suitable source patches and projected suitable hab-
itat patches in 2050 (see Appendix S8 for the effect of source patch 
exclusion on migration probabilities). The potential for dispersal (be-
tween and within habitat patches) and migration was based on the 
isolation by resistance relationship. The sigmoid isolation by resis-
tance relationship (Figure 2) was determined by a self-starting non-
linear least square model with the genetic similarity as response and 
the logarithmic effective resistance as predictor. Genetic similarity 
was defined as a function of Nei's genetic distance (y) and ranges 
between 1 and 100:

The isolation by resistance model was used to predict genetic 
similarities based on the calculated effective resistances for dispersal 

Genetic similarity =

(

1 −
(y −min (y))

max (y) −min (y)

)

× 100

F I G U R E  2   Sigmoid isolation by resistance relationship 
between the genetic similarity and the log10-transformed effective 
resistance (see Appendix S7 for the untransformed relationship 
with genetic distance) of Primula elatior in Europe. Genetic similarity 
is a function of Nei's genetic distance and ranges between 1 and 
100 with high values indicating high similarity. This isolation by 
resistance relationship determines the dispersal potential, migration 
potential and the accessibility of habitat patches. Dispersal 
limitation takes place at effective resistance values where the 
slope starts to decrease (log10-transformed effective resistance 
of approx. 1.25). The threshold (dashed red line) is defined at the 
centre of the sigmoid curve (inflection point) where the decrease 
in genetic similarity is at its highest point and dispersal limitation 
is certain. The linear decrease of genetic similarity at the higher 
end of the log10-transformed effective resistance (right side of 
the x-axis) suggests a migration–drift equilibrium (Van Strien 
et al., 2015)

Threshold:
log10(Eff. res.) = 2.68
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Genetic distance = 0.065

0

25

50

75

100

−2.5 0.0 2.5
Effective resistance (log10)

G
en

et
ic

 si
m

ila
rit

y



     |  1781VAN DAELE et al.

and migration in each species distribution scenario. The dispersal and 
migration potential thus reflect their respective predicted genetic 
similarities. Dispersal limitation takes place at logarithmic effective 
resistance values where the genetic similarity starts to decrease and 
is certain at the centre of the sigmoid curve (inflection point). A bi-
nary accessibility metric for dispersal and migration was based on 
this inflection point and corresponds to a genetic similarity of 50, an 
effective resistance of 14.52 and a genetic Nei's distance of 0.065. A 
patch was thus considered accessible when the dispersal and migra-
tion potential exceeded a genetic similarity of 50 (see Appendix S7 
for a detailed evaluation of this threshold). To demonstrate how dis-
persal affects the projected distribution, we calculated (a) the total 
area of suitable habitat (TA); (b) the suitable area that is so isolated 
that dispersal is unlikely to take place (dispersal-limited area: DLA); 
(c) the suitable area where the colonization capacity is restricted due 
to within-patch dispersal limitation (WLA); (d) the suitable area that 
is not accessible through migration (migration-limited area: MLA); 
and (e) the suitable area that is accessible (AA). The accessible area 
in a specific scenario is thus determined by the dispersal-limited area 
and the migration-limited area (AA  =  TA−{DLA  +  MLA}), and the 
migration-limited area is determined by the within-patch dispersal 
limitation of the current distribution (RO II). DLA, WLA, MLA and 
AA are determined by the before mentioned isolation by resistance 
threshold.

2.6 | Assessing shifts in patch distribution and 
configuration

To assess shifts in the patch distribution, we evaluated the me-
dian latitude, continentality (distance from the sea) and elevation 
with non-parametric Kruskal–Wallis tests. Pairwise comparisons 
between scenarios were evaluated with a Wilcoxon rank sum test 
(Mann–Whitney) with a Benjamini and Hochberg (1995) adjustment 
of the p values. Uncertainty was determined with the 95% confi-
dence interval of the median.

Generalized linear models were used to determine to what ex-
tent climate change affects the patch accessibility and proximity re-
sistance index (PRI) across space and time (RO III) with the following 
model:

Patch accessibility is a binary metric determined by the dispersal 
and migration potential, as explained in the last section. The PRI is an 
index accounting for patch size, similar to the patch proximity index 
proposed by Gustafson and Parker (1994), but with nearest-neighbour 
patch distance replaced by the effective resistance. The PRI is an indi-
cator of metapopulation dynamics, with high values indicating stable 
metapopulations (Gustafson & Parker, 1994). The PRI value of a hab-
itat patch was calculated by identifying each habitat patch (i) whose 
edge lay at least partially within the proximity buffer (5,000 m) of the 
focal patch centroid being indexed. The PRI was calculated based on 

the area in hectares (A) and the edge-to-edge effective resistance of 
dispersal (R) from patch i to its nearest neighbour:

RCP Scenario represents a categorical variable indicating the re-
spective climate change pathway (3) versus the current distribution 
(intercept). Climate change impacts within scenarios were assessed 
by their interaction effects with patch latitude and continentality. 
Significant interaction effects of the respective climate scenarios 
with latitude and continentality indicate shifts in patch accessibility 
and the PRI within a projected future distribution, compared to the 
current projected distribution (intercept). A binomial error distribu-
tion family with a logit link function was used to model accessibility 
and a Gaussian error distribution with log10-transformation of the 
response was used to model the PRI. The minimum latitude was set 
as the most southern patch and was therefore corrected for in the 
models by subtracting the minimum latitude from each coordinate. 
The generalized linear model with PRI as response was weighted to 
correct for heteroscedasticity. The weights were determined based 
on a linear model of the unweighted model residuals as explained 
by the unweighted predicted values (absolute model residuals ~ 
predicted values). The predicted weights were then transformed 
(1/predicted weights4) and used as input for the weighted model. 
Model results were presented by the predicted scenario means and 
their respective standard error, while the uncertainty interval in the 
figures was presented with the 95% confidence interval. Overall ef-
fects are depicted by the mean and standard deviation of climate 
scenarios (3). The proportion of deviance explained in the models 
was determined by the D2 adjusted with “modEvA v2.0” in R (Guisan 
& Zimmermann, 2000). The explained variance of each fixed term 
(scenario, geographic components and their interaction) was par-
titioned to disentangle climate change effects from geographic ef-
fects. A more in depth analysis of explained variance drivers, regional 
effects, the relative contribution of area and dispersal probabilities 
to PRI, and the relative contribution of dispersal and migration prob-
abilities to patch accessibility can be found in Appendix S8.

2.7 | Assessing mitigation effects of envisioned 
large-scale afforestation

To analyse the potential mitigation effect of anticipated forest res-
toration targets in the EU, we constructed a land use change sce-
nario based on the observed 0.4% annual total forest gain in the 
past decades (European Commission,  2013). This projected forest 
gain is in line with EU policy targets aiming to plant 3 billion trees 
per decade, and the expected natural regeneration on abandoned 
farmland (European Commission, 2020). To this end, variable buff-
ers were constructed surrounding the Corine (CLC) broadleaf for-
ests (400 m), mixed forests (100 m) and coniferous forests (200 m), 
and an intersect of each separate layer was taken with the LUISA 

Response ∼ RCPScenario × Latitude + RCPScenario × Continentality

PRI =

n
∑

i=1

Ai

Ri
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forest reference scenario, which depicts the projected land use 
change by 2050 (Lavalle,  2014). This approach enables refining 
broad coarse scale projections for forest change to specific forest 
types and predicts a total forest gain of 12% (19 million hectares) 
between 2020 and 2050 (0.4% annually). Due to predicted mas-
sive mortality events of coniferous species by the end of the cen-
tury (McDowell et al., 2016), forest restoration efforts are likely to 
be focused on broadleaf species (Spiecker et al., 2004). Therefore, 
our forest restoration scenario (from here on referred to as “2050 
mitigation”) corresponds to a partial broad-leaved forest increase 
of 55.9% and a mixed and coniferous forest decrease by 19.2% and 
8.1%, respectively.

The mitigating effect of reforestation on patch latitude and 
continentality was based on non-parametric pairwise comparisons 
(Wilcoxon rank sum/Mann–Whitney test) of scenario medians. To 
assess to what extent reforestation can mitigate climate change 
impacts of patch accessibility and PRI, we evaluated the following 
models (RO IV):

Mitigation was a binary categorical variable that determines 
whether the species distribution model for 2050 was created using 
the baseline land use or using the reforestation land use scenario.

3  | RESULTS

3.1 | Drivers of the habitat suitability and 
distribution

The predicted suitability for P. elatior is high from the foot of the 
Pyrenees and throughout the Atlantic zone, but decreases to-
wards Denmark (Figure 3). Furthermore, suitability hotspots can be 
observed near Slovenia and continental Croatia and in the north-
western maritime zone of Norway. Introduced populations which 
thrive well in Norway were generally correctly identified as suit-
able hotspots. The mean AUC of the predicted suitability was 0.81 
(Figure 3 in Appendix S5). The true-positive rate (TPR) of all occur-
rences in relation to predicted suitable habitat patches was 0.68, the 
true-negative rate (TNR) was 0.96 and the resulting true skill statistic 
was 0.64.

Landscape-scale and macro-climatic variables contributed 
78.33% and 21.67%, respectively, to the model (RO I; Table 1). Land 
use was the main predictor of P. elatior occurrences in Europe, where 
broad-leaved forest, mixed forest, green urban areas and agriculture 
with a considerable amount of natural vegetation had a clear posi-
tive effect on the projected distribution (Figure 1 in Appendix S5). 
Occurrences could generally be observed in areas with an intermedi-
ate temperature seasonality (annual temperature variability) and the 
niche optimum ranged from 4.12 to 6.62℃ (>.5 probability of pres-
ence) standard deviation (Figure 2 in Appendix S5). The probability 
of occurrence sharply declined below 250 mm of rainfall during the 

warmest quarter. The negative relation of the species’ occurrence to 
the log10-transformed distance to rivers and elevation reflected its 
association with riparian zones and lowlands. Although soil physical 
properties (Soil PC1 and PC2), landscape-level tree species cover 
(Carpinus, Quercus and Fagus), orientation (aspect) and degree of soil 
wetness (WPI) significantly affected model accuracy (>∆2 AICc), 
their contribution was limited.

The projected increase in temperature seasonality and decrease 
in rainfall during the warmest quarter by 2050 is expected to re-
sult in a total net loss (RO I) of 17,721 km2 suitable habitat (−31.2%) 
under RCP 2.6, 23,587 km2 (−49.4%) under RCP 4.5 and 26,036 km2 
under RCP 8.5 (−58.5%). Overall, the projected change in habitat 
suitability due to climate change was estimated to result in the loss 
of 46.4 ± 13.9% (mean ± SD of climate change scenarios) of currently 
available habitat. However, the actual colonisation of new suitable 
habitat in 2050 depended on the dispersal capacity of the species.

3.2 | Accessibility of suitable habitat through 
dispersal and migration

Land use, river distance and elevation contributed 45.5%, 36.4% and 
18.2%, respectively, to the resistance matrix, and effective resist-
ances had a high explanatory power for genetic distance (MLPE: 

Response ∼ RCPScenario × Mitigation

F I G U R E  3   Predicted suitability of Primula elatior in Europe. The 
density curve displays the cumulative suitability as a function of 
latitude (y) and longitude (x). The predicted suitability ranges from 
0 to 1 and is displayed in the colour key bar
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R2
marginal = .76, R2

conditional = .92, and the partial Mantel statistic was 
0.77). The predicted accessibility of habitat patches decreased from 
94.1% (current projected distribution) to 72.6% for RCP 2.6, to 72.8% 
for RCP 4.5 and to 70.3% for RCP 8.5 (SE < 0.1 in all scenarios). The 
low migration potential resulted in a reduction of the accessible 
distribution area (RO II) in all scenarios, where 33,510 km2 (−40.2% 
compared to the current scenario) of the projected distribution area 
was accessible for RCP 2.6 compared to 28,274 km2 (−49.5%) for RCP 
4.5 and 23,735 km2 (−57.6%) for RCP 8.5 (Figure 4; Figure 5). The lim-
ited migration potential thus resulted in 15.6 ± 1.7% (mean ± SD of 
climate change scenarios) of the projected total distribution in 2050 
that was not accessible.

3.3 | Expected shifts in the habitat distribution and 
configuration

Projected habitat loss was most severe in continental France, and 
habitat gain was most prevalent in the temperate maritime climate 
zones of France, England and Norway (Figure  4). The median lati-
tude of suitable habitat patches shifted northwards by 148.8 ± CI 
[144.8, 153.2] km for RCP 2.6, 182.4  ±  CI [178.8, 186] km for 
RCP 4.5 and 218.4 ± CI [214.8, 222.4] km for RCP 8.5 relative to 
the current median latitude of 2.752  ×  106  ±  CI [2.747, 2.756] m 

(chi-square = 8,494.8, p = <.001, df = 6). The median distance from 
the sea of suitable habitat patches (i.e. their continentality) de-
creased by 48.8 ± CI [47.5, 50] km for RCP 2.6, 58.1 ± CI [56.7, 59.3] 
km for RCP 4.5 and 67.4 ± CI [66.3, 68.6] km for RCP 8.5, relative 
to the current median distance of 124.9 ± CI [123.4, 126.5] km (Chi 
square = 3,309.1, p = <.001, df = 6). Surprisingly, the median eleva-
tion of suitable patches decreased by 45.1 ± CI [42.8, 47.7] m for 
RCP 2.6, 52 ± CI [49.6, 54.7] m for RCP 4.5 and 63.6 ± CI [61.1, 61.1] 
m for RCP 8.5 relative to the current median elevation of 200.7 ± CI 
[198.3, 203.4] m (chi-square = 2,638.6, p = <.001, df = 6). However, 
the reduction in median elevation was most likely related to the shift 
to a more maritime climate and was therefore not considered further 
(Appendix S8).

The distribution shift of habitat patches resulted in a reduced 
patch accessibility in the north and in the more temperate maritime 
regions (RO III; Table 2; Figure 6). The predicted average PRI of ac-
cessible habitat patches decreased from 210.4 in the current pro-
jected distribution to 158.3 for RCP 2.6, 116.1 for RCP 4.5 and 118.2 
for RCP 8.5, with a standard error smaller than 0.1 for each scenario. 
Furthermore, the PRI strongly decreased in the south under climate 
change (see Table  2 for test statistics and Figure  6 for predicted 
means and their confidence interval).

Overall, the median latitude of habitat patches is thus expected 
to shift 183.2 ± 34.8 km (mean ± SD of climate change scenarios) 

F I G U R E  4   Habitat loss (red), gain 
(green) and habitat relicts (unchanged; 
blue) of Primula elatior in Europe for 
RCP 2.6 and RCP 8.5, with (right) 
and without (left) forest restoration 
mitigation. Dispersal and migration 
limitations are taken into account for the 
displayed habitat change. All geographical 
calculations are based on the ETRS89-
extended/LAEA Europe and the scale 
is visualized in 106 metres on the left 
(latitude) and on the bottom (longitude). 
WGS84 graticules are indicated in degrees 
(curved projection) on the right (latitude) 
and on the top (longitude). The embedded 
figures display the proportional turnover 
(%) of habitat in loss, gain and relict 
(unchanged habitat), respectively (y-axis) 
in relation to the latitude (x-axis) in 106 
metres (LAEA Europe)
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northwards and 58.1 ± 9.3 km (mean ± SD) to more maritime climate 
regions. Furthermore, the PRI is expected to reduce by 37.8 ± 11.3% 
(mean ± SD) under climate change.

3.4 | Mitigation effects of large-scale afforestation

Reforestation mitigated 115.6% (net gain) of the total distribution 
area loss for RCP 2.6, 73.7% for RCP 4.5 and 55.9% for RCP 8.5. The 
mitigation of the accessible distribution area loss amounted to 73.9% 
for RCP 2.6, 50.3% for RCP 4.5 and 38.2% for RCP 8.5 (RO IV). The 
median northward latitudinal shift was only slightly mitigated for 
RCP 2.6 (1.3% reduction; p = .037) and not significantly mitigated for 
RCP 4.5 (5.9%, p =  .108). However, 6.9% of the median northward 
shift was mitigated for RCP 8.5 (p = <.001). The median predicted 
shift from continental to more maritime regions was considerably 
mitigated, with a 35.6% reduction for RCP 2.6 (p = <.001), 34.8% 
reduction for RCP 4.5 (p = <.001) and 30.0% reduction for RCP 8.5 
(p = <.001; see Appendix S8 for post hoc result tables and an over-
view of scenario medians and their 95% confidence intervals).

Overall, reforestation mitigated 81.7  ±  30.7% (mean  ±  SD 
of climate change scenarios) of the total distribution area loss, 

54.1  ±  18.2% (mean  ±  SD) of the accessible habitat area loss and 
33.5 ± 3% (mean ± SD) of the shift in the median habitat patch con-
tinentality. More habitat became available in the north and more 
maritime regions under reforestation management (Figure  5 and 
Appendix S8). Therefore, the predicted mean (±SD) patch accessibil-
ity decreased in 2050 to 65 ± 0.9% compared to 72 ± 1.5% without 
reforestation management (Figure 7). However, reforestation miti-
gated 49.5 ± 4.2% (mean ± SD) of the loss in PRI in the accessible 
distribution area due to climate change (see Table 2 for test statistics 
and Figure 7 for predicted confidence intervals).

4  | DISCUSSION

4.1 | Suitability drivers

The high contribution of landscape-scale variables in our species dis-
tribution model, with land use, distance to rivers and elevation as main 
predictors, points at the importance of ecosystem characteristics and 
landscape-scale processes for the occurrence of P. elatior. The impor-
tance of distance to rivers confirms its known ecological niche of rich 
mesic soils with loam deposits and high organic matter content, typical 
of floodplain forests (Taylor & Woodell,  2008). Furthermore, the im-
portance of local and landscape-scale conditions for the occurrence of 
P. elatior is in line with other studies examining such drivers on forest 
herbs (Bernhardt-Römermann et al., 2015; Greiser et al., 2020; Valdés 
et al., 2015). Even though local factors are important drivers, climate 
still has a considerable contribution to the species’ distribution (21.7%). 
A clear optimum in temperature seasonality implies a dependence on 
annual variation in temperatures, but also a sensitivity to temperature 
extremes. This coincides with earlier findings that exposed a strong 
phenological sensitivity in P. elatior (Baeten et al., 2015). The positive 
relation between the precipitation of the warmest quarter and P. ela-
tior occurrences confirms the intolerance to desiccation of the species 
(Whale, 1983). Climate change effects are projected to be more severe 
in southern continental regions (Fick & Hijmans, 2017), and therefore, it 
is likely that conditions would shift outside of the species’ climatic niche 
optimum in these regions. In the more maritime and northern regions, 
on the other hand, new available habitat is likely to become available be-
cause the climatic niche would shift into the species’ optimum (Figure 4). 
Expected habitat loss in the continental south exceeds habitat gain in 
northern and maritime regions and the total distribution area is likely to 
reduce considerably by 2050 (46.4 ± 13.9%; mean ± SD). This coincides 
with the coarse median suitability loss of forest herb flora distributions 
in Europe predicted by Skov and Svenning (2004). However, one limita-
tion of our study is that we did not take the climatic buffering effect 
of forests directly into account (Lembrechts et  al.,  2018; Zellweger 
et al., 2020). Furthermore, species responses to macro-climatic changes 
might be attenuated by plant phenotypic responses and/or local ad-
aptation of fitness-related traits (Benito Garzón et al., 2019; Razgour 
et al., 2019). Integrating both temperature measurements of forest and 
riparian microclimates, and the adaptive potential of populations in pre-
dictions could further improve accuracy in the future.

F I G U R E  5   Scenario-specific summaries of the projected total 
distribution area (TA), accessible area (AA), within-patch dispersal-
limited area (WLA), migration-limited area (MLA) and dispersal-
limited area (DLA) of Primula elatior in Europe
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4.2 | Predicting spatio-temporal dispersal patterns

Due to the low predicted migration potential of P. elatior to new 
available habitat in 2050 (Figure 5), it is estimated that 15.6 ± 1.7% 
(mean ± SD) of the projected total distribution area will be inaccessible 
for colonization. The low migration potential of P. elatior is reflected 
by its inherent life-history traits, such as the long period until first re-
production (~3 years), specific germination requirements and absence 
of specific dispersal mechanisms (Taylor & Woodell, 2008; Verheyen 
et al., 2003). Honnay et al., (2002) and Jacquemyn et al., (2002) both 
empirically determined the dispersal potential of P. elatior in frag-
mented landscapes and found that colonization after 40–50  years 
was virtually zero when habitat patches were more than 1,000  m 
apart. This roughly coincides with modelled dispersal rates of 24 to 
95 m per year in forest species without adaptations to animal disper-
sal vectors (Dullinger et al., 2015). Correspondingly, the mean migra-
tion distance of accessible P. elatior patches in our future scenarios is 

481 ± 3 m (mean ± SE), while non-accessible patches have on average 
a 10,015 ± 49 m (mean ± SE) distance (Appendix S7). Source popula-
tions should thus be able to colonize newly available patches if they 
disperse on average 16 m per year over a 30-year timeframe.

One limitation in using effective resistance to model migration 
patterns is the inability to integrate gradual landscape changes. New 
algorithms that calculate stepwise dispersal between intermediate 
scenarios could improve biological realism (Engler et al., 2012), but 
this process would further complicate the genetic optimization pro-
cess. In addition, efforts that link field-verified colonisation rates 
over time (e.g. individual-based spatially explicit modelling; Landguth 
et al., 2010) with genetic divergence could improve the temporal es-
timation of dispersal models. Taking these limitations in account, our 
study integrates the genetic and landscape structure on a continen-
tal scale which results in highly accurate isolation-by-resistance pre-
dictions on a habitat patch scale. The functional dispersal patterns of 
P. elatior emphasize the importance of streams as efficient corridors 

TA B L E  2   Climate change effects on the accessibility and proximity resistance index (PRI) of projected Primula elatior habitat patches in 
Europe. “Between scenario” climate change effects are determined by the projected scenario (factor), geographic effects are determined by 
latitude and continentality (continuous) and the distribution shifts (within scenario) are determined by the interaction of geographic effects 
with scenario's. N depicts the total amount of projected habitat patches in each scenario and values correspond to z-statistics (Accessibility) 
and t-statistics (PRI) of the fixed terms. Effects on patch accessibility (binary) are based on the total distribution area and the proximity 
resistance index (PRI) is based on the accessible area. The intercept is the current scenario and the minimum latitude is corrected to the most 
southern patch (latitude–min{latitude}). Residual variance is largely related to regional differentiation in observed patterns (Appendix S8). 
The reforestation section depicts the overall mitigation effect and the scenario-specific mitigation effects are determined by the interaction 
between climate change scenario and a reforestation factor (binary). The intercept depicts the corresponding climate change scenario without 
reforestation. Each row and each column in the reforestation section corresponds to a distinct model and the intercept corresponds to the 
overall mitigation model. Scenario-specific mitigation effects are calculated on data subsets (future scenario with and without reforestation)

Term N Accessibility PRI Effect

Intercept (Current) 57,840 73.8*** 164.3*** Between scenario

RCP 2.6 51,000 −33.8*** −22.3***

RCP 4.5 43,989 −32.4*** −32.4***

RCP 8.5 39,879 −32.3*** −27.2***

Latitude −21.7*** −40.6*** Geographic

Continentality −12*** −58.6***

RCP 2.6 × Latitude −8.5*** 21.4*** Within scenario (shift)

RCP 4.5 × Latitude −8.2*** 27.1***

RCP 8.5 × Latitude −10.5*** 21.8***

RCP 2.6 × Continentality 22.4*** −5.5***

RCP 4.5 × Continentality 21.6*** −0.6

RCP 8.5 × Continentality 23.2*** 2.1*

Explained variance (D2
adj) 15 11.7 Variance partitioning (%)

Scenario 46.7 16.3

Interaction (shift) 4.0 3.1

Climate change 50.7 19.4

Geographical 49.3 80.6

Intercept (Climate change) 99.2*** 572.3*** Reforestation

RCP 2.6 × mitigation 57,606 −26.2*** 13.9***

RCP 4.5 × mitigation 51,354 −22.1*** 27.6***

RCP 8.5 × mitigation 47,547 −18.3*** 18.1***

Overall mitigation +7,213 ± 316 −26.2*** 14***

***p ≤ .001.; **p ≤ .01; *p ≤ .05.
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(Araujo Calçada et al., 2013) and the modelled dispersal of Primula 
elatior could extend to other perennial herb species that often occur 
in alluvial forests and are slow colonizers such as Lysimachia nemorum, 
Lamium galeobdolon, Anemone nemorosa, Paris quadrifolia, Circaea lu-
tetiana, Arum maculatum, Chrysosplenium alternifolium, Allium ursinum, 
and Chrysosplenium oppositifolium (Verheyen et al., 2003). Validation 
of our approach for these and other forest herbs could further opti-
mize management decisions to protect and restore forest understo-
rey communities in a context of global change.

4.3 | The impact of climate change on habitat 
distribution and configuration

Climate change will likely result in a northward shift of the median 
patch distribution (183.2 ± 34.8 km; mean ± SD) and to more maritime 
regions (58.1 ± 9.3 km; mean ± SD). The low migration potential to 
new available habitat is estimated to result in a general reduction of 
patch accessibility in these regions (Figure 6 and Appendix S8). This 
indicates that P. elatior will not be able to track the changing climate, 
which is in line with research of other understorey herbs (Dullinger 
et al., 2015; Honnay et al., 2002; Takahashi & Kamitani, 2004). Not the 

least because the North Sea and a non-suitable region in Sweden sep-
arates the fragmented populations at the leading edge from the newly 
available maritime habitat in Norway. The significant reduction of 
available projected habitat in the continental south by 2050 (Figure 5) 
and decrease in dispersal probabilities between habitat patches 
(Appendix S8) will likely cause a general reduction of the metapopula-
tion stability (as determined by PRI) in these regions (Table 2; Figure 6). 
P. elatior is known to quickly lose genetic diversity when the metap-
opulation stability decreases (Jacquemyn et al., 2009), and therefore, 
southern remnant populations are estimated to still be threatened in 
the long term.

Interestingly, populations that were introduced in Norway during 
the late 19th century are currently in the naturalisation process 
(Gederaas et al., 2012). The ten regions currently occupied there, 
are in the close vicinity of habitat gain in the future, and could drive 
local migration patterns. Therefore, current naturalizing populations 
could become part of the shifting range. Overall, this illustrates the 
value of our modelling strategy for guiding assisted migration sce-
narios (Hunter-Ayad et al., 2020). Combining SDMs with dispersal 
models thus have a strong potential for guiding conservation and 
restoration efforts, but field validation remains critical (Laliberté & 
St-Laurent, 2020).

F I G U R E  6   Interaction effects 
between climate change (scenario) and 
the geographical position of Primula 
elatior habitat patches (as determined 
by latitude and continentality) on patch 
accessibility and the proximity resistance 
index. The predicted means and their 
95% confidence interval (colour fill) 
relate to the within-scenario effects in 
Table 2. The latitude is represented in 
meters based on the LAEA89 coordinate 
system and continentality is represented 
in km distance from the coast. The 
patch accessibility is based on the total 
distribution area and the proximity 
resistance index is based on the total 
accessible area. The northernmost known 
native populations (green) can be found 
around 3.7 × 106 m latitude (LAEA89) 
or 57° North (WGS84). More northern 
populations in Norway (beige) are known 
to have been introduced and are therefore 
marked separately

( ) ( )

( ) ( )

Current RCP 2 6 RCP 4 5 RCP 8 5
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4.4 | Mitigating climate change effect of 
forest herbs

Reforestation will likely mitigate most of the projected habitat 
loss due to climate change (81.7 ± 30.7%; mean ± SD) and a sub-
stantial amount of the accessible habitat area loss (54.1  ±  18.2%; 
mean ± SD). The mitigation of the shift in the median patch latitude 
is limited because mitigating effects in the south of the range are 
accompanied by habitat gain in the north of the range (Figure  5). 
Therefore, patch accessibility is not positively affected by reforesta-
tion. However, habitat gain in continental regions in the centre of 
the distribution (Figure 5) results in a considerable mitigation of the 
median patch continentality shift. These areas are generally in the 
vicinity of existing populations and are therefore accessible for mi-
gration. Habitat gain in the vicinity of these remaining populations 
results in a considerable mitigation of the loss in metapopulation sta-
bility (49.5 ± 4.2%; mean ± SD), as determined by the PRI. However, 
it is important to note that colonization success of reforested and 
afforested habitat patches is strongly dependent on past land use 
patterns. Successful colonization is often delayed by decades to cen-
turies and short-term mitigation effects could therefore turn out to 
be lower than anticipated (Baeten et al., 2010; Naaf & Kolk, 2015).

5  | CONCLUSION

The sensitivity of Primula elatior to the change in seasonal climate pat-
terns and rainfall during the warmest quarter will likely result in a con-
siderable loss of the total distribution area by 2050. Furthermore, due 
to its limited migration capacity, it is estimated that the species will be 
unable to track the shifting climate. The metapopulation stability will 
likely decrease across the range and southern populations will be most 
affected. Reforestation is estimated to considerably mitigate the loss of 
the distribution area, and metapopulations are predicted to remain more 

stable. However, to completely alleviate habitat loss it seems required 
to integrate strategies for climate change mitigation (RCP 2.6), refor-
estation, restoration of ecological connectivity and assisted migration.
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