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Abstract—The contribution of this work is to propose an exact
calculation for the interaction elements appearing in space-time
time domain boundary element methods based on a dimensional-
ity reduction procedure. Similar methods have been applied in the
frequency domain, while in the time domain only numerical or
semi-analytical approaches have been proposed. The calculation
presented here replaces a four dimensional interaction integral
with a sum of lower dimensional integrals of a new effective
Green function that can be evaluated in closed form. In this paper
the method proposed is applied to scalar basis an testing function
on flat supports but it can be adapted to the electromagnetic
case. The results can be used as a benchmark to evaluate the
precision and stability of existing numerical methods. It allows
to distinguish instabilities inherent to the method and those that
appear as a consequence of limited quadrature precision.

I. INTRODUCTION

Time domain boundary integral equations allow modeling
electromagnetic and acoustic scattering by systems comprising
generic geometries and a wide range of materials. A general
method to numerically solve this integral equation consists
in using the marching-on-in-time (MoT) algorithm. A well
known problem of the MoT algorithm is the late time in-
stability, which can be caused, among other things, by the
finite precision of the space-time interaction matrix elements.
Indeed, in the Galerkin discretization, the interaction elements
are of the form

Imn =

∫
Γ

∫
Γ′
fm(r)tn(r

′)
δ(t− R

c )

4πR
dSdS′ ∗ p(t), (1)

where fm(r) and tn(r
′) are the spatial basis and testing

function, Γ and Γ′ their supports, R = |r − r′|, p(t) is a
function depending on the type of temporal discretization and
∗ is the convolution operator. The accurate computation of the
interaction elements in both time and frequency domain has
been the focus of various previous works. In the frequency
domain the presence of singular kernels is the main obstacle
for the accurate computation of the interaction elements. The
general methods to deal with this are based on either the
singularity cancellation or the singularity subtraction idea.

Another fully numerical approach was developed in [1] and
[2] resulting in an analytical integrand that can be evaluated
efficiently with the Gaussian quadrature method. In [3] Lenoir
and Salles propose a method to reduce the dimensionality of
the integration of homogenous Green functions that allows
to compute exactly the interaction integral. A similar idea
that leads to completely analytical evaluation is applied in the
method of moments by Tihon and Craeye [4].

In time domain the convolution with the temporal basis
function gives interaction integrals that cannot be accurately
computed with the standard Gaussian method within reason-
able computational costs, even when the singularity is out
of the domain of integration. In [5], [6] more efficient and
accurate numerical schemes were developed for both singular
and nonsingular integrals. In [7] and [8] a closed form for
the evaluation of the single surface integral is shown. A semi-
analytical method for the double surface integral have been
presented in [9], [10] and works by evaluating exactly three
out of four integrals and computing numerically the remaining
integral. In [11] the same method is used to get an efficient
and stable MoT scheme for the EFIE, MFIE and CFIE.
In this work we propose a novel approach that allows to reduce
the interaction integrals to a sum of lower dimensionality
integrals that can be evaluated in closed form. We use the
idea of the dimensional reduction procedure for homogenous
Green functions from [3] and we extend it to the time domain.
We write the Green function in the frequency domain, we
expand it in its power series (w.r.t. the interaction distance
R) and we apply the dimensionality reduction procedure term
by term. This is possible because each term in the series is
homogeneous. The resulting series converges and gives a new
effective Green function that can be evaluated exactly in a
wide range of cases. In this work we restrict to the case of
scalar and constant basis and testing function for its much
simpler resulting formula, but the same idea will be used to
build an analogous result for the electromagnetic case. Indeed,
this method can be extended to polynomial basis and testing
function of any degree but resulting in a higher number of



lower dimensional integrals to compute. The final goal of this
method is to obtain a stable MoT scheme for those situations
where the accuracy of the matrix elements has the highest
impact on the late time stability of the solution, for example
in case where the geometry supports many resonant modes
or contains cavities leading to high Q-factors. The results for
a pulse temporal basis function are presented and compared
with a Gaussian quadrature method to test the validity of the
formula.

II. DIMENSIONAL REDUCTION FOR HOMOGENEOUS
GREEN FUNCTION

In this section we revisit the workings of the dimensional
reduction procedure for a homogeneous integrand of the form

I =

∫
Γ

∫
Γ′
f(r)t(r′)H(R(r, r′))dSdS′, (2)

with f(r) and t(r′) scalar functions which are constant within
their supports, R(r, r′) = |r − r′|, H(R) an homogeneous
function, and Γ, Γ′ are assumed to be flat triangles. As in [3],
by using the homogeneity property of the Green function the
previous integral can be recast into

I =
1

d+ d′ + α( 3∑
i=1

ai

∫
Γ

∫
∂Γ′

i

f(r)t(r′)H(R(r, r′))dSdl′i+

+

3∑
j=1

a′j

∫
∂Γj

∫
Γ′
f(r)t(r′)H(R(r, r′))dljdS

′
)
,

(3)

which is a sum of integrals with lower dimensionality of the
same Green function. The domains ∂Γi, ∂Γ′

j are the edges of
Γ, Γ′, α is the degree of homogeneity of the Green function
and d, d′ = 2 are the dimensions of Γ, Γ′. The coefficients ai,
a′j are determined upon choosing a point in the intersection
of the planes defined by the two triangles. Such a point is
characterized by parameter values satisfying

r(λ) = r′(λ′). (4)

where r(λ), r′(λ′) is the parameterization of the triangles (
for example λ, λ′ can be the barycentric coordinates). Such
system always has a line of solutions, except for the case of
parallel triangles. In this case we use a different method that
leads again to a reduced dimensionality. We do not show here
such method since the general case where parallel triangles and
edges can occur is beyond the scope of this contribution. An
important property of this procedure is that the Green function
in the right hand side of (3) is the same as that appearing in
the original integral. We can reiterate this procedure in order
to further reduce the dimensionality of the integrals. The 4-
dimensional triangle-triangle integral is replaced by a sum of
2-dimensional integrals of the type vertex-triangle or edge-
edge that can be evaluated exactly by a mild generalization of
the techniques introduced in the seminal paper [12].
This calculation can be applied also to polynomial testing and

basis function by a recursion on both the degree of the trial/test
functions and the dimension of the integration domain.

III. DIMENSIONAL REDUCTION IN TIME DOMAIN

In the MoT scheme for time domain BIEs, the Galerkin
discretization produces interaction integrals of the type

Imn(t) =

∫
Γ

∫
Γ′
fm(r)tn(r

′)
δ(t− R

c )

4πR
dSdS′ ∗ p(t), (5)

Again we assume Γ and Γ′ to be planar triangles, f(r)
and t(r′) scalar constant functions, R = |r − r′|, p(t) is
the temporal basis function that is assumed to be piecewise
polynomial and depends on the discretization scheme, and
∗ denotes temporal convolution. We propose a method that
allows us to treat this integral by means of the same dimen-
sionality reduction mentioned above. We first apply the Fourier
transform obtaining

Ĩmn(ω) =

∫
Γ

∫
Γ′
fm(r)tn(r

′)
e−iωR

c

4πR
p̃(ω)dSdS′. (6)

and then we expand the exponential in Taylor series around
R = 0:

Ĩmn(ω) = p̃(ω)

∫
Γ

∫
Γ′

fm(r)tn(r
′)

4πR

+∞∑
n=0

1

n!

(−iωR

c

)n
dSdS′

(7)

Each of the terms is of homogeneous type (2) and is amenable
to the dimensional reduction procedure. Term n in the sum-
mation has degree of homogeneity n− 1 so we obtain

Ĩmn(ω) = p̃(ω)

3∑
i=1(

ai

∫
∂Γi

∫
Γ′

1

4πR

+∞∑
n=0

1

(n+ 3)n!

(−iωR

c

)n
dlidS

′+

+ a′i

∫
Γ

∫
∂Γ′

i

1

4πR

+∞∑
n=0

1

(n+ 3)n!

(−iωR

c

)n
dSdl′i

)
,

(8)

where the factor 1
n+3 corresponds to the coefficient in front of

(3), which is given by the inverse of the sum of the dimension
of the domain of integration and the degrees of homogeneity
of the Green function. The series that now appears in the
integrand is convergent and it gives a new effective green
function of the reduced integrals. In our case we want to apply
the dimensionality reduction procedure twice, in order to get
a sum of 2-dimensional integrals that we can evaluate exactly.
This brings an extra factor 1

n+2 , giving the following effective
Green function

G̃eff(R,ω) =

=
1

4πR

+∞∑
n=0

1

(n+ 3)(n+ 2)n!

(−iωR

c

)n
=

=
1

4πR

(( 1

(ikR)2
+

2

(ikR)3

)
e−ikR +

1

(ikR)2
− 2

(ikR)3

)
,

(9)



where we put k = ω
c .

Going back to the time-domain we get

Geff(R, t) =

=
1

4πR

(((c∂−1
t

R

)2
+ 2
(c∂−1

t

R

)3)
δ
(
t− R

c

)
+

+

((c∂−1
t

R

)2
− 2
(c∂−1

t

R

)3)
δ
(
t
))

,

(10)

where we introduced the operator

∂−1
t =

∫ t

−∞
dt′

which is well defined when assuming that all the signals vanish
for t < 0.

IV. WELL BEHAVIOR OF THE EFFECTIVE GREEN FUNCTION

Putting everything together what we obtain for the time-
domain interaction element is

Imn(t) =

∫
Γ

∫
Γ′
fm(r)tn(r

′)
δ(t− R

c )

4πR
dSdS′ ∗ p(t) =

=

( 3∑
i,j=1

Aij

∫
∂Γi

∫
∂Γ′

j

Geff(R, t)dlidl
′
j+

+

3∑
α=1

2∑
β=1

(
Bαβ

∫
∂∂Γαβ

∫
Γ′
Geff(R, t)dS′+

+B′
αβ

∫
Γ

∫
∂∂Γ′

αβ

Geff(R, t)dS
))

∗ p(t),

(11)

where ∂Γi is the edge i of the corresponding triangle, ∂∂Γαβ

is the vertex β of the edge α and Aij , Bαβ are matrices of
coefficients.
Looking at the explicit form of the effective green function
some question may arise when comparing the effective signal,
integrated in the 2-dimensional integrals, with the original
signal integrated in 4 dimensions.
Without loss of generality we consider a temporal function
p(t) which is nonzero only in an interval (−δt, 0), and analytic
in the same interval. In this case, for fixed time t, the integrand
in four dimensions is nonzero only for distances

ct < R < c(t+ δt).

Hence, for a sufficiently large value of t the integrand in four
dimensions vanishes in the entire domain of integration. The
effective signal for large time t > R is not explicitly zero,
and this is apparently in contrast with equation (11). However
it can be shown that the specific combination of temporal
integrals in (10) vanishes after the convolution with p(t). A
similar problem arises for small values of t and δt when
considering nontouching triangles. For small enough values
of t, δt the integrand in 4 dimensions is zero, but the effective
Green function in this case gives

1

4πR

((c∂−1
t

R

)2
+ 2
(c∂−1

t

R

)3)
δ
(
t
)

(12)

which is nonzero. This effective signal consists of two terms,
which are proportional to 1

R3 and 1
R4 . When considering

nontouching triangles, the integration of each one of these
terms results to be zero for the specific combination appearing
in the right-hand side of (11). The number of terms appearing
in (12) is related to the number of times we applied the
dimensional reduction procedure, in this case two. This result
is independent of the type of temporal function, hence also for
small times no contradiction arises.

V. EXACT RESULTS FOR PULSE TEMPORAL FUNCTION

The last step to obtain the exact interaction element is
to perform the integration in the right-hand side of (11).
Assuming again a temporal function which is analytical in
a finite interval and zero otherwise, we can efficiently ap-
proximate such function with polynomials. For many of the
commonly used temporal discretisation schemes, the temporal
basis function is piecewise polynomial and our procedure will
yield the exact value of the integral. After the convolution with
the effective Green function the resulting integrand becomes
of the type

Geff(R, t) ∗ p(t) =
0 for R < ct∑n1

n=−4 an(t)R
n for ct < R < c(t+ δt)∑n2

n=−4 bn(t)R
n for R > c(t+ δt)

, (13)

where the coefficients an(t), bn(t) are also polynomials in
time.
As a first test of the formula we consider a pulse function

p(t) =


0 for t < −δt

1 for − δt < t < 0

0 for t > 0

. (14)

The convolution with the Green function appearing in the 4-
dimensional integral is just

G(R, t)∗p(t) = 1

4πR
p(t−R) =


0 for R < t
1

4πR for t < R < t+ δt

0 for R > t+ δt
(15)

while the convolution with the effective Green function gives

Geff(R, t) ∗ p(t) =

=


0 for R < t
1
4π

(
1
6R − t2

2R3 + t3

3R4

)
for t < R < t+ δt

1
4π

(
(t+δt)2−(t)2

2R3 − ((t+δt)3−(t)3)
3R4

)
for R > t+ δt

.

(16)

where we set c = 1 for a more compact formula. In table I we
show the results, in units of c = 1, for different choices of pairs
of triangles and the comparison with a numerical Gaussian
integration pushed to 900 points for each triangle. In the first
column the type of triangle pair is specified in function of their
distance. The small distance pairs are separated by a distance



of the same order of their diameters, while the large distance
pairs are separated by a distance of 102 times their diameter.
In the second and third column the integration of 1

R over the
entire triangles is reported by means of the exact calculation
in the second proposed and with the Gaussian quadrature
method respectively. In the fourth and fifth column the exact
and the Gaussian calculation of 1

R over the intersection with
a spherical shell of inner radius t and outer radius t + δt,
that gives the integral of (15) in unit of c = 1. First we
note that the integrals over full pairs at small distance shows
an agreement of the exact and the numerical calculation of
the order of 10−12, 10−13. This is not surprising since the
quadrature rule without any singularity works efficiently over
the full triangles, but this also shows the precision reachable
with the exact method. In the case of the intersection with
the shell the relative discrepancy between the two method is
around 10−3, 10−4 for all the data taken. This is imputable
to the loss of precision of the quadrature rule. Similarly in
presence of singularity we note the same order of discrepancy
for the adjacent triangles and an even higher loss of precision
for coincident triangles. The large distance integrals over full
triangles show a relative discrepancy of 10−8. We impute this
lower precision to the exact formula this time for the following
reasons. When lowering the number of quadrature points, the
quadrature rule returns the exact same result within a margin of
10−12. Instead, the exact formula in this case contains a sum
of terms where cancellations between large numbers occurs
bringing an estimated absolute error of 10−10 that on numbers
around 0.02 agree with the relative discrepancy obtained. Such
cancellations however are dumped by the smaller δt in case of
the intersection with the shell, bringing an estimated absolute
error of 10−11. These estimates were given by checking the
integral of (12) over the combination (11), which must be zero
for nontouching triangles, as we mentioned in the previous
section. For the small distance data this integral gives values
of the order of 10−15 while for the large distance ones gives an
order of 10−10 when taking δt around the size of the triangles,
and an order of 10−11 for δt around 0.1 times the size of the
triangles. For the coincident and adjacent triangles we cannot
check the precision with the Gaussian method but in this case
the exact formula can be reduced to two 2 dimensional terms
for the coincident triangles and four terms for the adjacent
ones. No cancellations between large number occurs in this
scenario, and so we expect an accuracy close to machine
precision in these cases.
In conclusion these data show the validity of the formula
proposed and the extremely high accuracy our closed form
solution can deliver. Note that in large scale simulations,
compression algorithms will be required, leaving only near
field interactions to be computed explicitly. The discussion
above demonstrated these interactions can be computed up to
extremely high precision.
In terms of efficiency this method requires computation of a
higher number of two dimensional integrals for each single
double surface integral. However this can be solved by saving
all the possible nonzero two dimensional integrals for an entire

Distance Exact Gaussian Ex. with sh. Gs. with sh.
Coincident 7.7041 7.1042 0.55959 0.55888
Coincident 8.1701 7.5378 0.845036 0.846431
Coincident 9.4508 8.9539 1.3191 1.3167
Adjacent 6.3673 6.3680 2.2098 2.2102
Adjacent 4.1943 4.1972 1.37124 1.37134
Adjacent 6.7795 6.7778 1.6199 1.6189

Small dist. 0.91515418951784 0.91515418951789 0.1140 0.1138
Small dist. 0.7037510311220 0.7037510311218 0.038979 0.038963
Small dist. 0.87033587862231 0.87033587862235 0.3681 0.3679
Large dist. 0.0227688407 0.0227688420 0.0110376 0.0110365
Large dist. 0.024307922 0.024307917 0.0085634 0.0085608
Large dist. 0.0253067110 0.0253067123 0.0110342 0.0110366

TABLE I

mesh, and then combining the values for each double surface
integral following the exact formula.

VI. CONCLUSION

In this work a method to obtain a closed form for the
interaction matrix elements of time domain boundary integrals
equations (TD-BIEs) is proposed. The exact calculation of the
matrix elements is obtained by firstly expanding in Taylor
series the Green function in the frequency domain. Then a
dimensional reduction procedure is applied to the series by
using the homogeneity property of the single terms. When
going back to the time domain, a new effective time domain
Green function is obtained. The resulting integrals with lower
dimensionality can be evaluated exactly when the temporal
bases function is piecewise polynomial. We showed results
for a piecewise constant temporal function, comparing the
exact calculation with the numerical Gaussian integration.
The results of this method allow to calculate efficiently and
precisely the interaction matrix elements and they can be used
as a benchmark to evaluate other numerical schemes, as well
as to improve stability of the MoT algorithm for TD-BIEs. In
this contribution, we limited ourselves to the case of the scalar
wave equation. Generalization of this method to the integrands
encountered in solving the Maxwell wave equation are subject
of ongoing research.
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