Advanced search
1 file | 1.86 MB Add to list

Mycotoxin reduction and metabolite profiles of ogi produced using traditional fermentation methods

Author
Organization
Project
Abstract
Mycotoxins are widely present in maize, a favourite staple food in sub-Saharan Africa. Food processing methods, like fermentation, have been suggested as potential ways to reduce mycotoxin contamination levels in the grain and, as a result, limit the exposure of crop consumers to the harmful effects of the toxins. The influence of four traditional fermentation processes [cold (with changed steeping liquor (CSL) and unchanged steeping liquor (USL), Fon and Goun procedures] on the mycotoxin reduction and metabolites profile of ogi, a fermented maize product, was studied. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and gas chromatography linked to high resolution time-of-flight mass spectrometry (GC-HR-TOF-MS) were respectively employed for the mycotoxin and metabolite profiles analyses of the samples. Among the nine mycotoxins detected in the raw maize samples, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) + fumonisin B2 (FB2) concentrations were found to exceed the European Union (EU) maximum limit. Both cold (containing USL and CSL) and Goun fermentation techniques were able to lower the AFB1 concentration below this threshold. The metabolomics result revealed that ogi produced using the cold (USL) and Fon fermentation processes had the highest number of most of the detected important compounds, whereas the Goun fermentation process produced the fewest compounds in total. There was no statistically significant difference in the ability of the specified natural fermentation processes to lower FB1, FB2, FB3, deoxynivalenol (DON), sterigmatocystin (STERIG), and zearalenone concentrations in maize (ZEN). In addition, the results demonstrated that the four natural fermentation processes evaluated had varying effects.
Keywords
Pharmaceutical Science, Nutrition and Dietetics, Food Science, mycotoxins, food safety, Food metabolomics, Food processing, GC-HR-TOF/MS, ogi, traditional fermentation, UHPLC-MS/MS, LACTIC-ACID BACTERIA, FOOD, MAIZE, IMPACT, FUMONISINS, STIGMASTA-3,5-DIENE, AFLATOXINS, RISK, FATE

Downloads

  • 1-s2.0-S2667025923000444-main.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 1.86 MB

Citation

Please use this url to cite or link to this publication:

MLA
Odukoya, Julianah Olayemi, et al. “Mycotoxin Reduction and Metabolite Profiles of Ogi Produced Using Traditional Fermentation Methods.” FOOD HYDROCOLLOIDS FOR HEALTH, vol. 4, 2023, doi:10.1016/j.fhfh.2023.100160.
APA
Odukoya, J. O., De Saeger, S., De Boevre, M., Adegoke, G. O., Devlieghere, F., Croubels, S., … Njobeh, P. B. (2023). Mycotoxin reduction and metabolite profiles of ogi produced using traditional fermentation methods. FOOD HYDROCOLLOIDS FOR HEALTH, 4. https://doi.org/10.1016/j.fhfh.2023.100160
Chicago author-date
Odukoya, Julianah Olayemi, Sarah De Saeger, Marthe De Boevre, Gabriel Olaniran Adegoke, Frank Devlieghere, Siska Croubels, Gunther Antonissen, et al. 2023. “Mycotoxin Reduction and Metabolite Profiles of Ogi Produced Using Traditional Fermentation Methods.” FOOD HYDROCOLLOIDS FOR HEALTH 4. https://doi.org/10.1016/j.fhfh.2023.100160.
Chicago author-date (all authors)
Odukoya, Julianah Olayemi, Sarah De Saeger, Marthe De Boevre, Gabriel Olaniran Adegoke, Frank Devlieghere, Siska Croubels, Gunther Antonissen, Oluwafemi Ayodeji Adebo, Sefater Gbashi, Johnson Oluwaseun Odukoya, and Patrick Berka Njobeh. 2023. “Mycotoxin Reduction and Metabolite Profiles of Ogi Produced Using Traditional Fermentation Methods.” FOOD HYDROCOLLOIDS FOR HEALTH 4. doi:10.1016/j.fhfh.2023.100160.
Vancouver
1.
Odukoya JO, De Saeger S, De Boevre M, Adegoke GO, Devlieghere F, Croubels S, et al. Mycotoxin reduction and metabolite profiles of ogi produced using traditional fermentation methods. FOOD HYDROCOLLOIDS FOR HEALTH. 2023;4.
IEEE
[1]
J. O. Odukoya et al., “Mycotoxin reduction and metabolite profiles of ogi produced using traditional fermentation methods,” FOOD HYDROCOLLOIDS FOR HEALTH, vol. 4, 2023.
@article{01HC781Z3MW0ZXRYKD5823RRS6,
  abstract     = {{Mycotoxins are widely present in maize, a favourite staple food in sub-Saharan Africa. Food processing methods, like fermentation, have been suggested as potential ways to reduce mycotoxin contamination levels in the grain and, as a result, limit the exposure of crop consumers to the harmful effects of the toxins. The influence of four traditional fermentation processes [cold (with changed steeping liquor (CSL) and unchanged steeping liquor (USL), Fon and Goun procedures] on the mycotoxin reduction and metabolites profile of ogi, a fermented maize product, was studied. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and gas chromatography linked to high resolution time-of-flight mass spectrometry (GC-HR-TOF-MS) were respectively employed for the mycotoxin and metabolite profiles analyses of the samples. Among the nine mycotoxins detected in the raw maize samples, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) + fumonisin B2 (FB2) concentrations were found to exceed the European Union (EU) maximum limit. Both cold (containing USL and CSL) and Goun fermentation techniques were able to lower the AFB1 concentration below this threshold. The metabolomics result revealed that ogi produced using the cold (USL) and Fon fermentation processes had the highest number of most of the detected important compounds, whereas the Goun fermentation process produced the fewest compounds in total. There was no statistically significant difference in the ability of the specified natural fermentation processes to lower FB1, FB2, FB3, deoxynivalenol (DON), sterigmatocystin (STERIG), and zearalenone concentrations in maize (ZEN). In addition, the results demonstrated that the four natural fermentation processes evaluated had varying effects.}},
  articleno    = {{100160}},
  author       = {{Odukoya, Julianah Olayemi and De Saeger, Sarah and De Boevre, Marthe and Adegoke, Gabriel Olaniran and Devlieghere, Frank and Croubels, Siska and Antonissen, Gunther and Adebo, Oluwafemi Ayodeji and Gbashi, Sefater and Odukoya, Johnson Oluwaseun and Njobeh, Patrick Berka}},
  issn         = {{2667-0259}},
  journal      = {{FOOD HYDROCOLLOIDS FOR HEALTH}},
  keywords     = {{Pharmaceutical Science,Nutrition and Dietetics,Food Science,mycotoxins,food safety,Food metabolomics,Food processing,GC-HR-TOF/MS,ogi,traditional fermentation,UHPLC-MS/MS,LACTIC-ACID BACTERIA,FOOD,MAIZE,IMPACT,FUMONISINS,STIGMASTA-3,5-DIENE,AFLATOXINS,RISK,FATE}},
  language     = {{eng}},
  pages        = {{13}},
  title        = {{Mycotoxin reduction and metabolite profiles of ogi produced using traditional fermentation methods}},
  url          = {{http://doi.org/10.1016/j.fhfh.2023.100160}},
  volume       = {{4}},
  year         = {{2023}},
}

Altmetric
View in Altmetric