- Author
- Loïc Piret (UGent)
- Promoter
- Sebastien Bertrand (UGent) and Marc De Batist (UGent)
- Organization
- Project
- Abstract
- Glaciers are currently retreating at an alarming rate worldwide as a consequence of global climate change. Since glaciers respond rapidly to changes in temperature and winter precipitation, reconstructing their behavior in the past can provide precious information regarding the evolution of the climate system. Traditional geomorphic techniques used to reconstruct the evolution of glaciers, however, provide records that are notoriously discontinuous. Proglacial sediments, on the other hand, have the potential to hold continuous and high-resolution records of past glacier dynamics. How changes in glacier dynamics are reflected in sediment physical and chemical properties remains however relatively unknown. With this in mind, the goal of this thesis is to understand how glacier dynamics are recorded in proglacial lake and fjord sediments. We do so by comparing detailed sedimentological and geochemical analyses of lake and fjord sediment cores collected in different proglacial settings with existing and newly acquired data on historical glacier variability. Patagonia is particularly suited for this project since (1) it contains many pristine proglacial lakes and fjords in all types of configurations, (2) glacier variability over the last century is relatively well known or easy to ascertain, and (3) Patagonian glaciers are among the most dynamic glaciers on Earth. Four different glacier – sedimentary basin systems were specifically selected to address research questions related to how glacier variability is recorded in proglacial lake and fjord sediments The processes leading to the initial formation of proglacial lake sediment records were examined in Calluqueo Lake by comparing the progressive deglaciation of the basin during the 20th century with its lake floor morphology and sediment infill. Results indicate that the initial lake floor right after deglaciation consisted of diamicton and exposed bedrock, which created an uneven surface. We hypothesized that the first fine-grained sediments that reached the lake accumulated between the coarse till material to sufficiently smoothen the uneven lake floor prior to the formation of a finegrained stratigraphic record. Based on a varve-dated sediment core taken in a relatively small finegrained sediment field in the lake, we concluded that a fine-grained stratigraphic record only starts forming 20 – 50 years after deglaciation. This delay likely varies between proglacial basins depending on the roughness of the basin floor and sedimentation rates after deglaciation. Our findings imply that (1) the first few decades of glacier variability are not recorded in the proglacial fine-grained lake or fjord sediments, and (2) deglaciation chronologies based on basal ages are not as accurate as previously thought. The influence of proglacial intermediate lakes on downstream sediment properties and yield was investigated by comparing the detailed reconstruction of the growth of Steffen proglacial lake with downstream fjord sediment cores. The 137Cs (Cesium-137) chronology of the most distal core combined with sediment trap data suggest that sediment accumulation in the fjord remained relatively stable through time, despite the accelerating growth of the intermediate lake. This suggests that the lake trapping effectiveness was balanced by higher sediment production due to accelerating glacier shrinkage and meltwater production. Our results also indicate that the growing intermediate lake increasingly trapped coarse sediments, as demonstrated by the progressive fining of the sediments deposited in Steffen Fjord. However, this filtering effect appears to reach a threshold above which lake size no longer influences downstream sediment grain size. When exactly such a threshold is reached likely varies between lakes, and depends on site-specific geomorphological factors. This study suggests that glacier variability may not always be clearly recorded in downstream fjord sediments, if an intermediate lake is present. ix The geomorphological, hydrological, and sedimentological impacts of a high-magnitude glacier lake outburst flood (GLOF) on a river-fjord system were studied at the head of Baker Fjord. One of the largest contemporary GLOFs in Patagonia is the 1945-10 +8 GLOF that originated from Bergues Lake due to the retreat of Lucía Glacier. This ~256 × 106 m3 GLOF was identified through the analysis of historical maps and recent satellite images. A sediment core collected in the downstream fjord showed that the GLOF triggered a turbidity current, which was recorded as a 6 cm-thick turbidite on the levee of the main submarine channel. The GLOF furthermore led to the abandonment of a subaerial river channel and of the associated submarine channel, as demonstrated by historical maps, bathymetric data, and a sudden switch in fjord sedimentology after the event. These results show that a single GLOF can strongly shape subaerial river planform and submarine morphology, and alter fjord sedimentology in the long term. The sedimentary signature of a glacier transitioning from calving to land-based conditions was investigated in Eyre Fjord through the study of satellite imagery, hydrographic profiles, and sediment cores. In 2010, the transition of Pio XI Glacier from calving to land-based resulted in the formation of an ice-contact delta at the southern terminus of the glacier. Concurrently, turbidity currents started occurring in Eyre Fjord, as recorded in fjord sediment cores over 35 km offshore of the ice-contact delta. We proposed that these plume-triggered turbidity currents started forming due to sediments being concentrated at specific locations along the fjord head once the delta had formed. These results suggest that (1) a strong change in a sediment record may reflect a relatively small-scale change at the fjord head instead of large ice-front position fluctuations or strong climatic shifts, and (2) the sudden appearance of turbidites in fjord sediment records could indicate a glacier transitioning from calving to land-based, provided that such an interpretation is supported by possible turbidity current pathways. Taken together, these results show that glacier dynamics are generally not linearly recorded in proglacial sediments. Although glacier variability can be linearly recorded in proglacial sediments in simple settings and on short timescales, multiple processes acting on decadal timescales disrupt this linear relationship (e.g. GLOFs, delta formation, intermediate lake growth, glacier surges, random iceberg behavior). These processes might influence the sedimentary signature of long-term glacier variability (e.g. millennial-scale glacier variations) but likely do not obscure or supersede them. Overall, our findings indicate that grain size and sediment accumulation rates are the best indicators of glacier variability in proglacial sediments. Grain size can represent either (1) the grain size of the sediment reaching the sedimentary basin, which is influenced by proglacial plain geomorphology (e.g. intermediate lakes and floodplains) and the grain size of the eroded sediment, or (2) hydrodynamic variability, which is influenced by factors such as distance to the glacier, meltwater discharge, and current pathways. These observations emphasize that thorough site reconnaissance is needed to accurately interpret grain-size signals. By comparison, sediment accumulation rates in proglacial lakes and fjords mostly reflect the amount of sediment brought to the proglacial basin predominantly by glacial meltwater. Therefore, they can be used to determine meltwater production, hence glacier variability, particularly on short (decadal) timescales. On longer timescales (centuries – millennia), sediment accumulation rates increasingly represent glacial erosion rates. Given the difficulties in obtaining accurate sediment chronologies in proglacial environments, efforts to develop new chronological methods are urgently needed. To conclude, this thesis supports the use of proglacial sediments to reconstruct glacier variability, but it warns that the linear relationship between glacier variability and proglacial sediment properties may be disrupted by several processes occurring on decadal timescales, such as proglacial delta formation, growth of intermediate proglacial lakes, and high magnitude GLOFs.
- Gletsjers smelten aan een alarmerend tempo als gevolg van de wereldwijde klimaatverandering. Aangezien gletsjers snel reageren op veranderingen in temperatuur en winterneerslag, kan de reconstructie van hun voorbije fluctuaties waardevolle informatie opleveren over de evolutie van het klimaatsysteem. De traditionele geomorfische technieken die worden gebruikt om de evolutie van gletsjers te reconstrueren, leiden echter tot resultaten die notoir discontinu zijn. Proglaciale sedimenten daarentegen bevatten continue data met een hoge resolutie van de dynamiek van vroegere gletsjer fluctuaties. Hoe veranderingen in de dynamiek van gletsjers worden weerspiegeld in de fysische en chemische eigenschappen van sedimenten blijft echter relatief onbekend. Het doel van deze thesis is dan ook om te begrijpen hoe de dynamiek van gletsjers wordt vastgelegd in de sedimenten van proglaciale meren en fjorden. We doen dit door gedetailleerde sedimentologische en geochemische analyses van meer en fjord sedimentkernen, verzameld in verschillende proglaciale omgevingen, te vergelijken met bestaande en nieuwverworven historische informatie over gletsjervariabiliteit. Patagonië is bijzonder geschikt voor deze studie omdat (1) het veel ongerepte proglaciale meren en fjorden in allerlei configuraties bevat, (2) de gletsjervariabiliteit van de afgelopen eeuw relatief goed bekend of gemakkelijk na te gaan is, en (3) Patagonische gletsjers tot de meest dynamische op aarde behoren. Vier verschillende gletsjer – sedimentaire bekkensystemen werden specifiek geselecteerd om onderzoeksvragen te beantwoorden over hoe gletsjervariabiliteit wordt vastgelegd in proglaciale meer- en fjordensedimenten. De processen die leiden tot het ontstaan van proglaciale sedimentarchieven in het Calluqueo meer werden onderzocht door de progressieve deglaciatie tijdens de 20ste eeuw van het bekken te vergelijken met de morfologie van de meerbodem en de sedimentvulling. Onze resultaten geven aan dat de oorspronkelijke bodem van het meer meteen na de deglaciatie bestond uit diamict en blootliggend gesteente, waardoor een oneffen oppervlak ontstond. Wij suggereerden dat de eerste fijnkorrelige sedimenten die het meer bereikten zich ophoopten tussen het grove glaciale till-materiaal om de oneffen meerbodem voldoende glad te strijken voordat er een fijnkorrelig stratigrafisch archief gevormd wordt. Op basis van een sedimentkern gedateerd met varven, genomen in een relatief klein fijnkorrelig sedimentveld in het meer, hebben wij geconcludeerd dat een fijnkorrelig stratigrafisch archief zich pas 20 – 50 jaar na de deglaciatie begint te vormen. Deze tijdspanne varieert waarschijnlijk tussen proglaciale bekkens, afhankelijk van de ruwheid van de bekkenbodem en de sedimentatiesnelheden na de deglaciatie. Onze bevindingen impliceren dat (1) de eerste decennia van gletsjervariabiliteit niet worden vastgelegd in de proglaciale fijnkorrelige meer- of fjordenafzettingen, en (2) dat chronologieën van deglaciatie op basis van basale sediment ouderdommen niet zo nauwkeurig zijn als eerder werd aangenomen. De invloed van proglaciale intermediaire meren op de stroomafwaartse sedimenteigenschappen en hoeveelheden werd onderzocht door de gedetailleerde reconstructie van de groei van het proglaciale Steffen meer te vergelijken met sedimentkernen in Steffen fjord. De 137Cs (Cesium-137) chronologie van de meest distale kern gecombineerd met sedimentval gegevens suggereren dat de sedimentaccumulatie in de fjord in de loop der tijd relatief stabiel bleef, ondanks de versnelde groei van het intermediaire meer. Dit suggereert dat de sedimentvangsteffectiviteit van het meer in evenwicht werd gehouden door het versnelde smelten van de gletsjer en de productie van smeltwater, die hogere sediment hoeveelheden opleveren. Onze resultaten tonen ook aan dat het groeiende intermediaire meer proportioneel meer grove sedimenten opving, zoals blijkt uit de progressieve verfijning van de sedimenten die werden afgezet in Steffen Fjord. Dit filtereffect lijkt echter een bepaalde drempel te kunnen bereiken waarboven de omvang van het meer geen invloed meer heeft op de stroomafwaartse sedimentkorrelgrootte. Wanneer een dergelijke drempel precies wordt bereikt, verschilt waarschijnlijk van meer tot meer en hangt af van locatiespecifieke geomorfologische factoren. Deze studie suggereert dat gletsjervariabiliteit niet altijd duidelijk wordt vastgelegd in fjordsedimenten stroomafwaarts als een intermediair meer aanwezig is. De geomorfologische, hydrologische en sedimentologische gevolgen van een gletsjermeeruitbarsting (GLOF; glacial lake outburst flood) op een rivier-fordsysteem werden bestudeerd in Baker fjord. Eén van de grootste hedendaagse GLOFs in Patagonië is de GLOF van 1945-10 +8 die ontstond door de gedeeltelijke drainage van het Bergues meer als gevolg van de terugtrekking van de Lucía-gletsjer. Deze GLOF met een volume van ~256 × 106 m3 werd geïdentificeerd door de analyse van historische kaarten en recente satellietbeelden. Uit een sedimentkern genomen in de benedenstroomse fjord, blijkt dat de GLOF een turbiditeitsstroom op gang heeft gebracht die werd geregistreerd als een 6 cm dikke turbidiet op de rand van het grootste onderzeese kanaal. De GLOF leidde voorts tot een verlating van een rivierkanaal op de delta en van het bijbehorende onderzeese kanaal, zoals blijkt uit historisch bewijsmateriaal, bathymetrische gegevens en een plotselinge verandering in de sedimentologie van de fjord na de gebeurtenis. Deze resultaten tonen aan dat één enkele GLOF zowel de riviervorm als de submariene morfologie sterk kan beïnvloeden en de fjord-sedimentologie voor een lange tijd kan veranderen. De sedimentaire signatuur van de transitie van een afkalvende gletsjer naar een vasteland gletsjer werd onderzocht in Eyre fjord door het bestuderen van satellietbeelden, hydrografische profielen en sedimentkernen. In 2010 leidde de vorming van een ijs-contact delta aan de zuidelijke terminus van Pio XI gletsjer tot het ontstaan van turbiditeitsstromingen in de fjord, die werden geregistreerd in fjordsedimenten op meer dan 35 km van de gletsjer. Deze turbiditeitsstromingen ontstonden waarschijnlijk doordat de sedimenten op specifieke plaatsen op de delta werden geconcentreerd. Deze resultaten suggereren dat (1) een sterke verandering in een sedimentarchief een relatief kleinschalige verandering aan het hoofd van de fjord kan weerspiegelen in plaats van grote schommelingen in de positie van het ijsfront of sterke klimaatveranderingen, en dat (2) het plotseling verschijnen van turbidieten in fjordensedimenten kan wijzen op de transitie van een afkalvende gletsjer naar een vasteland gletsjer, op voorwaarde dat een dergelijke interpretatie kan worden ondersteund door mogelijke turbiditeitsstroomtrajecten. Samen tonen deze resultaten aan dat de dynamiek van gletsjers doorgaans niet lineair geregistreerd wordt in proglaciale sedimenten. Hoewel gletsjervariabiliteit lineair kan worden vastgelegd in proglaciale sedimenten in eenvoudige geografische kaders op korte tijdschalen, verstoren meerdere processen die plaatsvinden op tijdschalen van enkele decennia deze lineaire relatie (b.v. GLOFs, deltavorming, groei van intermediaire meren, ijsbewegingsversnellingen, willekeurig ijsberggedrag). Deze processen kunnen de sedimentaire signatuur van gletsjervariabiliteit op lange termijn beïnvloeden (b.v. gletsjervariabiliteit op duizendjarige schaal), maar kunnen ze waarschijnlijk niet volledig verhullen of vervangen. In het algemeen geven onze bevindingen aan dat korrelgrootte en sedimentaccumulatie de beste indicatoren zijn voor gletsjervariabiliteit in proglaciale sedimenten. Korrelgrootte kan ofwel (1) de korrelgrootte vertegenwoordigen van het sediment dat het sedimentbekken bereikt, wat beïnvloed wordt door de geomorfologie van de proglaciale vlakte (bv. intermediaire meren en overstromingsgebieden) en de korrelgrootte van het geërodeerde sediment, ofwel (2) hydrodynamische variabiliteit reflecteren, die beïnvloed wordt door factoren zoals afstand tot de gletsjer, smeltwaterafvoer en stromingstrajecten. Deze waarnemingen benadrukken dat een grondige verkenning van de locatie nodig is om de signalen van de korrelgrootte nauwkeurig te interpreteren. Sedimentaccumulatie in proglaciale meren en fjorden weerspiegelt meestal de hoeveelheid sediment die voornamelijk door glaciaal smeltwater naar het proglaciale bekken wordt gebracht. Daarom kan sedimentaccumulatie gebruikt worden om de smeltwaterproductie en dus de gletsjervariabiliteit te bepalen, vooral op korte (decennium) tijdschalen. Op langere tijdschalen (eeuwen – millennia) vertegenwoordigd de sedimentaccumulatie in toenemende mate glaciale erosiesnelheden. Gezien de grote moeilijkheidsgraad om nauwkeurige sedimentchronologieën in proglaciale omgevingen te verkrijgen, zijn inspanningen om nieuwe chronologische methoden te ontwikkelen dringend noodzakelijk. Deze thesis ondersteunt het gebruik van proglaciale sedimenten om gletsjervariabiliteit te reconstrueren, maar waarschuwt dat de lineaire relatie tussen gletsjervariabiliteit en proglaciale sedimenteigenschappen kan worden verstoord door verschillende processen die zich op decennia tijdschalen voordoen, zoals de vorming van proglaciale delta's, de groei van intermediaire proglaciale meren en GLOFs van grote omvang.
Downloads
-
(...).pdf
- full text (Published version)
- |
- UGent only (changes to open access on 2028-07-05)
- |
- |
- 25.58 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-01H9JCCBQJGD7BPH2C6HPB9CBH
- MLA
- Piret, Loïc. Understanding How Glacier Dynamics Are Recorded in Lake and Fjord Sediments. Ghent University. Faculty of Sciences, 2023.
- APA
- Piret, L. (2023). Understanding how glacier dynamics are recorded in lake and fjord sediments. Ghent University. Faculty of Sciences, Ghent, Belgium.
- Chicago author-date
- Piret, Loïc. 2023. “Understanding How Glacier Dynamics Are Recorded in Lake and Fjord Sediments.” Ghent, Belgium: Ghent University. Faculty of Sciences.
- Chicago author-date (all authors)
- Piret, Loïc. 2023. “Understanding How Glacier Dynamics Are Recorded in Lake and Fjord Sediments.” Ghent, Belgium: Ghent University. Faculty of Sciences.
- Vancouver
- 1.Piret L. Understanding how glacier dynamics are recorded in lake and fjord sediments. [Ghent, Belgium]: Ghent University. Faculty of Sciences; 2023.
- IEEE
- [1]L. Piret, “Understanding how glacier dynamics are recorded in lake and fjord sediments,” Ghent University. Faculty of Sciences, Ghent, Belgium, 2023.
@phdthesis{01H9JCCBQJGD7BPH2C6HPB9CBH, abstract = {{Glaciers are currently retreating at an alarming rate worldwide as a consequence of global climate change. Since glaciers respond rapidly to changes in temperature and winter precipitation, reconstructing their behavior in the past can provide precious information regarding the evolution of the climate system. Traditional geomorphic techniques used to reconstruct the evolution of glaciers, however, provide records that are notoriously discontinuous. Proglacial sediments, on the other hand, have the potential to hold continuous and high-resolution records of past glacier dynamics. How changes in glacier dynamics are reflected in sediment physical and chemical properties remains however relatively unknown. With this in mind, the goal of this thesis is to understand how glacier dynamics are recorded in proglacial lake and fjord sediments. We do so by comparing detailed sedimentological and geochemical analyses of lake and fjord sediment cores collected in different proglacial settings with existing and newly acquired data on historical glacier variability. Patagonia is particularly suited for this project since (1) it contains many pristine proglacial lakes and fjords in all types of configurations, (2) glacier variability over the last century is relatively well known or easy to ascertain, and (3) Patagonian glaciers are among the most dynamic glaciers on Earth. Four different glacier – sedimentary basin systems were specifically selected to address research questions related to how glacier variability is recorded in proglacial lake and fjord sediments The processes leading to the initial formation of proglacial lake sediment records were examined in Calluqueo Lake by comparing the progressive deglaciation of the basin during the 20th century with its lake floor morphology and sediment infill. Results indicate that the initial lake floor right after deglaciation consisted of diamicton and exposed bedrock, which created an uneven surface. We hypothesized that the first fine-grained sediments that reached the lake accumulated between the coarse till material to sufficiently smoothen the uneven lake floor prior to the formation of a finegrained stratigraphic record. Based on a varve-dated sediment core taken in a relatively small finegrained sediment field in the lake, we concluded that a fine-grained stratigraphic record only starts forming 20 – 50 years after deglaciation. This delay likely varies between proglacial basins depending on the roughness of the basin floor and sedimentation rates after deglaciation. Our findings imply that (1) the first few decades of glacier variability are not recorded in the proglacial fine-grained lake or fjord sediments, and (2) deglaciation chronologies based on basal ages are not as accurate as previously thought. The influence of proglacial intermediate lakes on downstream sediment properties and yield was investigated by comparing the detailed reconstruction of the growth of Steffen proglacial lake with downstream fjord sediment cores. The 137Cs (Cesium-137) chronology of the most distal core combined with sediment trap data suggest that sediment accumulation in the fjord remained relatively stable through time, despite the accelerating growth of the intermediate lake. This suggests that the lake trapping effectiveness was balanced by higher sediment production due to accelerating glacier shrinkage and meltwater production. Our results also indicate that the growing intermediate lake increasingly trapped coarse sediments, as demonstrated by the progressive fining of the sediments deposited in Steffen Fjord. However, this filtering effect appears to reach a threshold above which lake size no longer influences downstream sediment grain size. When exactly such a threshold is reached likely varies between lakes, and depends on site-specific geomorphological factors. This study suggests that glacier variability may not always be clearly recorded in downstream fjord sediments, if an intermediate lake is present. ix The geomorphological, hydrological, and sedimentological impacts of a high-magnitude glacier lake outburst flood (GLOF) on a river-fjord system were studied at the head of Baker Fjord. One of the largest contemporary GLOFs in Patagonia is the 1945-10 +8 GLOF that originated from Bergues Lake due to the retreat of Lucía Glacier. This ~256 × 106 m3 GLOF was identified through the analysis of historical maps and recent satellite images. A sediment core collected in the downstream fjord showed that the GLOF triggered a turbidity current, which was recorded as a 6 cm-thick turbidite on the levee of the main submarine channel. The GLOF furthermore led to the abandonment of a subaerial river channel and of the associated submarine channel, as demonstrated by historical maps, bathymetric data, and a sudden switch in fjord sedimentology after the event. These results show that a single GLOF can strongly shape subaerial river planform and submarine morphology, and alter fjord sedimentology in the long term. The sedimentary signature of a glacier transitioning from calving to land-based conditions was investigated in Eyre Fjord through the study of satellite imagery, hydrographic profiles, and sediment cores. In 2010, the transition of Pio XI Glacier from calving to land-based resulted in the formation of an ice-contact delta at the southern terminus of the glacier. Concurrently, turbidity currents started occurring in Eyre Fjord, as recorded in fjord sediment cores over 35 km offshore of the ice-contact delta. We proposed that these plume-triggered turbidity currents started forming due to sediments being concentrated at specific locations along the fjord head once the delta had formed. These results suggest that (1) a strong change in a sediment record may reflect a relatively small-scale change at the fjord head instead of large ice-front position fluctuations or strong climatic shifts, and (2) the sudden appearance of turbidites in fjord sediment records could indicate a glacier transitioning from calving to land-based, provided that such an interpretation is supported by possible turbidity current pathways. Taken together, these results show that glacier dynamics are generally not linearly recorded in proglacial sediments. Although glacier variability can be linearly recorded in proglacial sediments in simple settings and on short timescales, multiple processes acting on decadal timescales disrupt this linear relationship (e.g. GLOFs, delta formation, intermediate lake growth, glacier surges, random iceberg behavior). These processes might influence the sedimentary signature of long-term glacier variability (e.g. millennial-scale glacier variations) but likely do not obscure or supersede them. Overall, our findings indicate that grain size and sediment accumulation rates are the best indicators of glacier variability in proglacial sediments. Grain size can represent either (1) the grain size of the sediment reaching the sedimentary basin, which is influenced by proglacial plain geomorphology (e.g. intermediate lakes and floodplains) and the grain size of the eroded sediment, or (2) hydrodynamic variability, which is influenced by factors such as distance to the glacier, meltwater discharge, and current pathways. These observations emphasize that thorough site reconnaissance is needed to accurately interpret grain-size signals. By comparison, sediment accumulation rates in proglacial lakes and fjords mostly reflect the amount of sediment brought to the proglacial basin predominantly by glacial meltwater. Therefore, they can be used to determine meltwater production, hence glacier variability, particularly on short (decadal) timescales. On longer timescales (centuries – millennia), sediment accumulation rates increasingly represent glacial erosion rates. Given the difficulties in obtaining accurate sediment chronologies in proglacial environments, efforts to develop new chronological methods are urgently needed. To conclude, this thesis supports the use of proglacial sediments to reconstruct glacier variability, but it warns that the linear relationship between glacier variability and proglacial sediment properties may be disrupted by several processes occurring on decadal timescales, such as proglacial delta formation, growth of intermediate proglacial lakes, and high magnitude GLOFs.}}, author = {{Piret, Loïc}}, language = {{eng}}, pages = {{XII, 154}}, publisher = {{Ghent University. Faculty of Sciences}}, school = {{Ghent University}}, title = {{Understanding how glacier dynamics are recorded in lake and fjord sediments}}, year = {{2023}}, }