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Abstract

In this paper we investigate potential bias in
fine-tuned transformer models for irony detec-
tion. Bias is defined in this research as spurious
associations between word n-grams and class
labels that can cause the system to rely too
much on superficial cues and miss the essence
of the irony. For this purpose, we looked for
correlations between class labels and words
that are prone to trigger irony, such as posi-
tive adjectives, intensifiers and topical nouns.
Additionally, we investigate our irony model’s
predictions before and after manipulating the
data set through irony trigger replacements.
We further support these insights with state-
of-the-art explainability techniques (Layer In-
tegrated Gradients, Discretized Integrated Gra-
dients and Layer-wise Relevance Propagation).
Both approaches confirm the hypothesis that
transformer models generally encode correla-
tions between positive sentiments and ironic
texts, with even higher correlations between
vividly expressed sentiment and irony. Based
on these insights, we implemented a number of
modification strategies to enhance the robust-
ness of our irony classifier.

1 Introduction

Irony is a complex form of figurative language
with which people convey the opposite meaning
of what they say. A typical example of verbal
irony is the explicit expression of positive senti-
ment towards a negative situation or event. In some
ironic statements, both the positive sentiment and
the negative sentiment are expressed explicitly, like
in the following example: “So nice of my stupid
neighbor to start mowing the lawn in the morning”.
However, more subtle ironic statements make this
paradox less obvious, if the speaker leaves out the
explicit negative sentiment (“stupid”). When do-
ing so, they assume the receiver of their message
already knows the connotative sentiment linked
to this situation. This assumption of connotative

common-sense knowledge, along with the contra-
dicting nature of the expression, makes automatic
irony detection a notoriously hard task. Since de-
tecting irony can also be difficult for humans, we
often use rhetorical devices such as exaggerations,
metaphors and intonation (in spoken language) or
tone to hint at the underlying irony.

Whereas traditional feature-based approaches
have long been the go-to methodology, most state-
of-the-art systems have switched to bi-directional
transformers (Devlin et al., 2018). These trans-
former systems have taken the lead for most bench-
marks in Natural Language Processing (NLP),
thanks to their word and sentence representations.
This leap did, however, come at the cost of model
explainability and insights into feature importance,
which are more easily accessible for traditional
machine learning algorithms, such as Logistic Re-
gression and Decision Tree.

In this paper, we explore several explainability
techniques and identify patterns in computational
modeling of a fine-tuned transformer model for
irony detection. In addition to existing metrics, we
first search for potential biases in the data based on
correlations between the irony label and lemmas
in the train data. After investigating the impact of
these bias words on the performance of our system
(by replacing and removing them and checking
the performance before and after), we combine
this methodology with existing SOTA attribution
techniques to verify whether they reveal similar
patterns.

2 Related Research

As of late, transformer models have become an in-
tegral part of most state-of-the-art systems for irony
detection. This can be done either through direct
fine-tuning (Ángel González et al., 2020) or by us-
ing the contextual embeddings from a transformer
model as input for a different neural classifier, like a
Convolutional Neural Network (CNN) (Ahuja and
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Sharma, 2022). In some cases, this transformer rep-
resentation input was enriched with additional fea-
tures, as Cignarella et al. (2020) did by adding syn-
tactic n-gram features. For Dutch specifically, trans-
formers have already been fine-tuned and (quite fa-
vorably) compared to feature-based models with a
focus on modeling the implicit sentiments in ironic
statements (Maladry et al., 2022a).

The primary downside of these neural
representation-based systems is that they are noto-
riously hard to interpret in a reliable way (Ghorbani
et al., 2019). Nevertheless, plenty of attempts were
made to explain such models. Popular techniques
to gain insights into transformer models can be
classified in two groups: (1) feature perturbation
and (2) attention-based approaches. Most per-
turbation approaches, such as SHAP (Lundberg
and Lee, 2017) and LIME (Ribeiro et al., 2016),
are model-agnostic techniques that compare how
changes in the input (feature representation) affect
the output (prediction). While the aforementioned
systems ignore the underlying model architecture,
Integrated Gradients (IG) (Sundararajan et al.,
2017) keeps track of the gradient changes caused
by gradually lowering the feature values so as to
find the features that arouse important gradient
changes. As this makes it a neural-specific
perturbation approach, it is positioned closer to
the system architecture. One variation, called
Discretized Integrated Gradients (DIG), grounds
the perturbations in representations of sub-words
that exist in the vocabulary of a transformer’s
tokenizer (Sanyal and Ren, 2021). By using real
anchor-words with (mostly) lower feature values
as interpolation points, this technique creates a
non-linear path towards the padding-token (where
all feature values are 0).

The model-specific alternative (2) to perturba-
tion approaches instead relies on the attention
weights and estimates the feature importance by
tracking the activations in the neural network for a
single input. Though popular, the use of attention
weights as an explanation has been the topic of
heavy discussion, with researchers opposing (Jain
and Wallace, 2019) and supporting (Wiegreffe and
Pinter, 2019) their reliability. The most popular
explanation only accounts for the attention values
in a single (usually the final) layer (Xu et al., 2015).
More refined versions of this approach estimate
the feature importances by combining the atten-
tion weights of different layers, either through av-

eraging or with more sophisticated methods such
as attention roll-out (Abnar and Zuidema, 2020)
and layer-wise relevance propagation (LRP) (Mon-
tavon et al., 2017). While the use of attention is
especially popular in computer vision, the more
advanced methods have been successfully imple-
mented and validated for transformer models for
NLP by Chefer et al. (2021), who showed that their
improved implementation of LRP gives better class-
specific explanations compared to roll-out because
the latter tends to attach too much importance to
irrelevant tokens. Further mentions of LRP in this
paper follow the implementation of Chefer et al.
(2021).

To our knowledge, model explainability has not
been researched thoroughly for irony detection.
For Dutch, a manual analysis of wrong predic-
tions already reveals some limitations of SOTA
systems, including transformers (Maladry et al.,
2022b). One of these limitations is a strong re-
liance on formulaic expressions and the hypothesis
that (intense) positive sentiment is prone to func-
tion as an irony trigger. Still, this remains largely
based on intuition and does not include an extensive
investigation with existing attribution techniques
for explainability.

3 Investigation of Potential Bias Words

3.1 Data description

For our experiments, we focus on a model
that is fine-tuned on a data set for Dutch irony
detection (Van Hee et al., 2016). This balanced
data set contains 4453 train samples and 1113
held-out test samples. The ironic tweets in this
corpus were collected using the Twitter API
with irony hashtags, such as #ironie, #sarcasme
and #not as search terms. These irony hashtags
were then removed for training and testing. The
non-ironic tweets were collected from the same
users that wrote the ironic tweets and were then
manually annotated to make sure that they are
not ironic. All tweets in this corpus were labeled
using a fine-grained annotation scheme, which
also includes subcategories of irony, such as irony
by clash, situational irony and other verbal irony.
However, we will not elaborate on the distributions
of these labels, as we only use the binary irony
labels for this research.
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bias word EN corr. category
goed good 0.106 adjective

school school 0.0938 topical noun
weer again 0.0906 intensifier
fijn nice 0.0883 adjective

Table 1: A short list of the most correlated lemmatized
unigrams in the data set with translation, Matthews’
correlation to the binary irony label and the manu-
ally assigned category. The complete table with all
n-grams and correlations is publicly available at https:
//github.com/aMala3/DataBiasForIrony.

3.2 Identifying Bias Words
Our first goal is to detect “bias words”. In this re-
search, "bias" is defined as spurious associations
between word n-grams and class labels in our data
set (Van Hee et al., 2016) that can cause the system
to rely too much on superficial cues and miss the
essence of the irony. For example, if many ironic
tweets happen to contain a positive sentiment word,
this could cause the system to use intense posi-
tive sentiment as a proxy for irony, as is suggested
in Maladry et al. (2022b). To verify this hypoth-
esis, we first split the sentences into lemmatized
n-grams and use the presence of each n-gram as
a binary feature. Subsequently, we calculated the
correlation between the binary n-gram features and
the irony label across the train set using Matthews’
Correlation (also known as phi coefficient), a form
of Pearson Correlation adapted for two binary val-
ues (being presence of the lemmatized n-gram on
the one hand, and the irony label on the other hand).

We found that most correlated unigrams (poten-
tial spurious biases) can be classified into syntactic
and semantic categories (as illustrated in Table 1).
For tokens with a positive correlation, we iden-
tified the following categories: adjectives with a
positive sentiment, intensifiers (including interjec-
tions and exclamations used to intensify the overall
expression), and topical nouns. This final category
includes nouns like “school”, “exam”, “train” or
“bus” that have a strong semantic connection to a
specific topic, such as education and public trans-
port, respectively. On the other side of the spec-
trum, some of the tokens with a strong negative
correlation include hyperlinks (to images, websites,
etc.) and laughing, smiling or heart emojis and
emoticons such as <3, :) and ;).

For larger n-grams, i.e. bigrams and trigrams, we
found that they often include an important unigram
and one or more common collocations, like “zo

system lab. prec. rec. F1 N

Full
0 0.74 0.74 0.74 2245
1 0.74 0.74 0.74 2208

Adj.
0 0.69 0.55 0.61 164
1 0.84 0.91 0.87 431

Int.
0 0.66 0.60 0.63 472
1 0.77 0.82 0.79 778

Table 2: System performance of the fine-tuned Rob-
BERT model in 10-fold cross-validation on the train
set. We compare the performance on the complete train
set (Full) to the performance on the subsets where all
tweets contain one of the identified adjectives (Adj.) or
intensifiers (Int.).

goed” (EN: so good), “wat fijn” (EN: how nice).
In other cases, they can be a part of a complete
formulaic expression like “goed begin van de dag”
(EN: good start to the day). Since this means that
there is a significant overlap between the different
n-grams, we focus on the unigrams for this study.

3.3 Quantitative Analysis on Subsets

To investigate whether the correlation between
those potential bias words and the irony label is
not groundlessly used as an approximation of irony,
we evaluate the performance of a fine-tuned trans-
former on tweets that specifically contain these
words.1 We focus on the first two categories (ad-
jectives and intensifiers) as they can be more easily
isolated. For evaluation, we fine-tuned the pre-
trained Dutch RobBERT (Delobelle et al., 2020)
model in a 10-fold cross-validation setting. All
systems for this paper were fine-tuned for 2 epochs
(200 warm-up steps) with an AdamW optimizer,
learning rate of 5e-5, weight decay of 0.01, eval-
uating every 200 steps on a batch size of 8 on a
NVIDIA Tesla V100 GPU with 10% of the train
data (for each fold) held out as validation set.

As shown in Table 2, the system performs better
for the subsets containing adjectives (Adj.) and
intensifiers (Int.) than on the full set for the irony
label ‘1’, with recall scores of 0.91 and 0.82. The
lowest scores in the table are the recall scores
of 0.55 and 0.60 on the non-ironic label. The
combination of these two findings indicates that
the system overgenerates irony predictions and has
some room for improvement on non-ironic texts in
the subsets for adjectives and intensifiers.

1We limited this list to the 50 most correlated words and
manually verified them.
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In a next step, we wanted to investigate to what
extent the potential bias words serve as trigger
words and are therefore responsible for overgen-
erating irony predictions. We therefore systemat-
ically adapt the input by changing the potential
bias words and examine how this affects the perfor-
mance on these subsets.

4 Modified Samples

4.1 Modification

The first category of potential bias words we inves-
tigate contains adjectives that are generally used
to explicitly express positive sentiment about a sit-
uation with a negative connotation. As this is es-
sential to the irony, the adjectives cannot be sim-
ply removed. Instead, we propose replacing senti-
ment words with a strong correlation to the irony
label with a synonym that has a weaker or no cor-
relation. To find synonyms for the adjectives, we
generated the 20 nearest neighbors using fastText
embeddings (Bojanowski et al., 2016) from a pre-
trained Dutch model with an embedding size of
300 (Grave et al., 2018). The downside of using
such a similarity-based approach is that that the
proposed “synonyms” can have the opposite sen-
timent compared to the original adjective. For the
word “gelukkig” (EN: lucky or luckily), for exam-
ple, one of the suggested synonyms was “helaas”
(EN: unfortunately) and for “goed” (EN: good), the
most similar word was “slecht” (EN: bad). To as-
certain the validity of our irony label, as well as the
semantic and structural integrity of our sentences,
we manually verified and selected a list of relevant
synonyms for each adjective. In this case, we em-
ployed two setups: one always opting for the least
correlated word in the (automatically generated but
manually verified) synonym set and one randomly
selecting one of the possible synonyms (that are
not ranked in the top 50 most correlated lemmas
but can still have some correlation to the label).

The second category contains intensifiers (in-
cluding interjections and exclamations), which
function as a supporting element for the expres-
sion of irony. As these are the building blocks
for hyperboles and exaggerations, they are very
common and help clarify that a message should be
interpreted as ironic. However, they are generally
not essential to recognize the irony because they
only intensify the contrasting sentiment that is al-
ready expressed by the other words in the sentence.

set lab. prec. rec. F1 prob.
adj. 0 0.69 0.55 0.61 0.252
OG 1 0.84 0.91 0.87 0.748
adj. 0 0.64 0.55 0.59 0.262
corr. 1 0.84 0.88 0.86 0.738
adj. 0 0.66 0.55 0.60 0.257

rand. 1 0.84 0.89 0.86 0.743
int. 0 0.66 0.60 0.63 0.357
OG 1 0.77 0.82 0.79 0.643
int. 0 0.61 0.67 0.64 0.435
rem. 1 0.79 0.74 0.76 0.565

Table 3: System performance of the fine-tuned Rob-
BERT model in 10-fold cross-validation on the train set.
We compare the results for the subsets where all tweets
contain one of the identified adjectives (adj.) or inten-
sifiers (int.) in original form (OG) to the same subsets
in modified form (corr., rand. or rem.). The last column
presents the average probability of both labels in the
subset.

Therefore, we assume they can be removed without
significantly altering the meaning of the sentence
or flipping the irony label.

4.2 Quantitative Analysis on Modified Subsets

As presented in Table 3, replacing the adjectives by
a synonymous word only causes minimal changes
in system performance across both labels. On av-
erage, replacing one of the highly correlated adjec-
tives with the least correlated synonymous (posi-
tive) adjective (Adj. corr.) causes the irony prob-
ability to drop by 1%. When using a random syn-
onym from the list, the average probability only
drops by 0.5% (adj. rand.). This tells us that the
system is well able to overcome the lexical feature
level and properly generalizes the positive meaning
of the adjectives.

Although replacing the adjectives only has a min-
imal impact, the experiments for intensifiers show
different results. As is shown in Table 3, remov-
ing intensifiers (Int. rem.) from non-ironic tweets
improves the recall on those tweets by 7%. By con-
trast, the same modification caused the recall for
the irony label to diminish with 8%. Along with
the average predicted irony probability dropping
by 8%, this further supports the hypothesis that the
system relies on positive sentiments and considers
sentiment intensity a trigger for irony.

As we mentioned before, exaggerations and hy-
perboles may indicate irony and are therefore also
an intuitive cue for humans trying to identify irony.
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However, prototypical examples of explicit irony
are ironic due to the contrast between the expressed
and expected sentiment towards a situation, and do
not solely depend on the expression of a positive
sentiment or its intensity. If an automatic system
is too dependent on this element that supports the
expression of irony, it is likely to miss more subtle
cases and mistake genuinely (intensive) positive
sentiment for irony.

5 Explainability Metrics

To further solidify our understanding of how our
system models irony, we also employ explainability
metrics that account for the system architecture and
the mechanisms that drive its decision-making.

5.1 Explaining the Metrics

In our analysis, we include three metrics to locate
trigger words: Discretized Integrated Gradients
(DIG)2, Layer-Integrated Gradients (LIG)3 and an
improved implementation of Layer-wise Relevance
Propagation (LRP)4, each with increasing reliance
on the model architecture.5

DIG and LIG are two feature perturbation ap-
proaches based on Integrated Gradients. This
means that they estimate feature importance by us-
ing alternative input representations (perturbations)
with gradually lowered feature scores and compar-
ing those feature changes to the resulting gradient
changes. Unlike the original implementation of
Integrated Gradients, which uses linear paths to
scale down the feature representations, DIG cre-
ates a non-linear interpolation path by sending it
through the representations of real anchor words.
These anchor words are sub-words that exist in the
vocabulary of the transformer model’s tokenizer.
LIG, on the contrary, does not account for real
word representations, but instead considers how
the activations in the final layers are influenced
by the activations in previous layers. Compared
to those approaches, the LRP attribution technique
relies completely on the activations, weights and bi-
ases triggered by the current feature representation
and does not consider alternative input represen-
tations. This implementation (Chefer et al., 2021)

2https://github.com/INK-USC/DIG
3https://github.com/cdpierse/transformers-interpret
4https://github.com/hila-chefer/Transformer-

Explainability
5For each text, we use the explanation for unseen data,

meaning that the attributions were generated with the same
10-fold cross-validation setup we used in Section 3.3.

uses Deep Taylor Decomposition to attribute im-
portances in each layer, which are then propagated
backward throughout the network to result in total
attributions for (only) the predicted label.

5.2 Setup of the Analysis

All applied explainability metrics assess how each
sub-word in a text impacts the final prediction.
Therefore, the resulting attributions are only valid
on a local level (i.e. single text samples) and are not
general model features. To overcome this issue, we
perform both a manual analysis on the local tweet
level and a search for generally relevant tokens.

For our manual evaluation, we investigated a ran-
dom sample of texts with a focus on the sub-sets
discussed in Sections 3 and 4. This manual analy-
sis consisted of two parts: first, we compared the
different metrics among each other (on the same
sample of 50 tweets for all 3 metrics) and second,
we looked for systematic attribution patterns (on an
additional sample of 100 tweets). To estimate gen-
eral feature importances in a more quantitative way,
we calculated the average attributions for each sub-
token in the complete train corpus6. This allows
us to verify which sub-words our system generally
considers more important and complements our
manual analysis.

In Section 5.3, we discuss the first part of our
manual analysis (i.e. comparing the different met-
rics). Subsequently, in Section 5.4, we combine the
insights from the second part of the manual analy-
sis with an inspection of average token attributions
to discuss the general attributions patterns.

5.3 Comparing Explainability Metrics

To gain intuitive insights in the respective quality of
the different explainability metrics, we performed
a manual analysis using the three metrics on a set
of 50 samples, half of which containing a positive
sentiment word (1) and the other half containing
an intensifier (2). In the following examples (Fig-
ures 1 and 2), we present the tokens with a positive
attribution (for the irony label) in green and the
negative attributions (for the non-ironic label) in
red, with brighter colors presenting stronger attri-
butions. For DIG and LIG, a sentence can contain
both positive and negative attributions, but this is
not the case for LRP as the attributions are label-
specific. For each of the metrics, the visualizations
were generated with Captum (https://captum.ai/), a

6https://github.com/aMala3/DataBiasForIrony
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Figure 1: World Cup is going to be great, already look-
ing forward to it #DutchTeam #lookingforwardtoit

specialized library for visualizing explanations for
neural networks.

After manual inspection, we found that DIG
provides the least intuitive importance attributions,
whereas LIG and LRP seem to work better for irony
detection. In examples 1 and 2, “wordt” (EN: will
be) and “in” (EN: in) gain strong attributions, even
though these words only serve a functional purpose.
This issue, where high importance is assigned to
irrelevant tokens such as non-creative punctuation
(e.g., a comma or full stop) and function words
(e.g. articles), seems to be the most common for
DIG, less common for LIG and the least common
for LRP. For DIG, we found that non-zero attri-
butions were assigned to irrelevant punctuation in
18 out of 50 samples (36%) and to irrelevant func-
tion words in 26 samples (52%). Meanwhile, for
LIG we observed irrelevant punctuation in 7 cases
(14%) and irrelevant function words in 17 cases
(34%). For LRP, irrelevant punctuation was only
overestimated in 3 cases (6%) and function words
in 7 cases (14%). Whereas the DIG (and to a lesser
extent LIG) attributions for “weer eens lekker goed”
(EN: really did a great job again) vary between pos-
itive and negative, LRP attributions recognize them
as a single span and the primary reason for the irony
prediction in this tweet. On the same 50 samples,
the DIG attributions gave such opposite attribu-
tions within a single word (split into sub-words)
or text span in 30 samples (60%), as opposed to
the LIG attributions, which only showed this in 18
samples (36%). This issue cannot occur for LRP,
because it has label-specific attributions. To con-
clude, since we showed that LRP is less likely (1)
to attribute importance to irrelevant tokens, and (2)
to attribute contradicting importances to sub-tokens
that belong together, LRP revealed to be the most
meaningful metric for our analysis.

5.4 Discussing the Attribution Patterns

Combining our extensive manual analysis on a
larger sample (100 additional tweets) with an in-

Figure 2: They really did a great job again sprinkling
road salt in Nootdorp :-(

spection of the averaged token attributions allows
us to confidently present the following insights.
First, we found that the intensifiers, interjections
and exclamations indeed receive high attributions,
especially when combined with positive sentiment
words. Those positive sentiment words, like “goed”
(EN: good) and “fijn” (EN: nice) also receive rela-
tively high attributions by themselves. A manual
check of the sub-tokens with an average attribu-
tion of over 0.75 revealed that 111 of the 254 sub-
tokens (44%) have a positive sentiment. Replacing
these sentiment words by synonyms (as was done
in Section 4) with a more intense sentiment, such
as “geweldig” (EN: great) and “fantastisch” (EN:
fantastic), barely increases the attributions. Still,
adding a lexical intensifier to a positive adjective
results in a larger increase. The highest attribu-
tions are often linked to either the intensifier or
the positive adjective, without any clear reason to
choose one over the other. When several inten-
sifiers and sentiment words co-occur in the same
text, the attribution methods stack the attributions
on one or a few words, while disregarding the oth-
ers. As shown in Figure 3, LRP correctly spreads
the attributions evenly across a typical formulaic
expression.

Figure 3: This kind of World Cup and then this kind of
qualification. Wow, will be fun again. #orange

Some topics with high correlations in Section 3
also achieve high LRP attributions on average. This
is shown in the topic politics, represented by sub-
words like “conservatieve” (EN: conservative; with
an average attribution of 0.95).

However, this is not the case for “school”, re-
lated to the topic education), and trein (EN: train),
related to the topicpublic transport). Based on the
lemmatized unigram correlations, “school” has the
second highest correlation with the irony label, but
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Figure 4: The unions are to blame for everything again
if rva does not do its job properly #transparent

Figure 5: The unions are to blame for everything again
if rva does not do its job properly #transparent

Figure 6: Yaaa, I’m here for #nor she looks really great

the sub-token “school” only has an average LRP
attribution of 0.07. Likely, this is due to the fact
that the attributions tend to relate to intensifiers
and positive adjectives. We assume this because
the manual evaluation revealed that removing in-
tensifiers can occasionally redirect the attributions
to topics, as shown in Figure 4 (before removal)
and Figure 5 (after removal). Here,“weer” (EN:
again) is the intensifier, and “vakbonden” (EN: la-
bor unions) are the topic of the evaluation.

Surprisingly, the system also attributes high
scores to nouns that do not fit the expected top-
ical nouns, but that instead have a strong nega-
tive connotative sentiment, such as “wereldoorlog”
(EN: world war) and “dictatuur” (EN: dictatorship).
Alongside the aforementioned topical nouns, this
could indicate that the system already models some
connection between positive (adjectives) and nega-
tive (topics) sentiments within the same sentence.
This is also visible on a larger scale, when compar-
ing the average attributions on the positive adjective
subset to the same subset where the adjectives are
replaced by less correlated synonyms. The aver-
age attribution of “tandarts” (EN: dentist) changes
from 0.69 to 1 when replacing a highly correlated
adjective with a less correlated synonym, as was
done in Section 4. Still, this currently seems to be
limited to very popular topics for irony and nouns
with a strong negative sentiment.

When a text contains intense positive sentiment,
but is not intended in an ironic way, it is at risk
to be mistaken for irony. As shown in Figures 6
and 7, both the intensifiers, “echt” (EN: really)
and “heel” (EN: very), as well as the positive ad-
jectives “geweldig” (EN: amazing) and “gezellig”
(EN: pleasant / cozy), achieve high attributions for
the irony label. Notably, the positive emojis do not

Figure 7: Merel just left, was really veery nice

Figure 8: Finally a fun particum; diving! :D

Figure 9: #ruig_rok sweet! will be all right

receive any attributions for the irony label, while
they carry the same sentiment. In fact, when look-
ing at the correctly classified genuinely positive
texts (Figures 8 and 9), this type of positive emoji
serves as a trigger for the non-ironic label. Based
on the averaged token attributions7, this generally
seems to be the case for a selection of positive
emojis. Moreover, the correlation between single
tokens and the irony label in Section 3 already iden-
tified this as a potentially spurious bias.

Altogether, these results suggest that, while the
performance of transformers for irony detection is
quite good, the way our system models irony re-
mains rather superficial since it seems to depend on
the detection of lexical exaggerations of positive
sentiment. Although there are some indications to
argue that the model can partially model the con-
trast that is so essential to irony, the system seems
to only pick up the most extreme contrasts and
most common topical nouns. For the non-ironic
label, the system has also modeled an exaggerated
relation between the use of positive emojis and a
text being sincere because they were simply more
common in those texts. In the end, the patterns
in our transformer model are more similar to the
simple correlations calculated in Section 3 than
expected.

6 Training with Modified Data

As argued in Section 4, the modified tweets can
keep the same irony label as the original tweets.
This means that they could also prove helpful as
additional train data, as they introduce (1) more
lexical variety to the data set by using less frequent
synonyms and (2) are also examples of irony with a

7Available at https://github.com/aMala3/
DataBiasForIrony.
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system prec. rec. F1 acc.
Base 0.7242 0.7210 0.7210 0.7227
Aug 0.7245 0.7221 0.7222 0.7237

Table 4: System performance of the fine-tuned Roberta
models on the held-out test set. Scores are averaged
over 5 train runs to overcome the relatively difference
between highest and lowest F1-score (2-3%) depending
on the seed.

lower sentiment intensity. Therefore, the modified
samples could help improve the robustness of our
model and allow it to recognize more subtle ironic
expressions.

In Table 4, we present the scores on the held-out
test set for the two versions of the train set: (1) the
original train set (Base) with a train size of 4007
and validation size of 446 and (2) the original train
data including the modified samples (Aug) with a
train size of 5794 and validation size of 645 (a total
increase of 1986 samples).

While the augmented system may be more ro-
bust in practice, fine-tuning RobBERT on (2) the
data set with modified examples shows no direct
improvement over the original train set when eval-
uating on the held-out test set. We hypothesize this
may be related to the fact that the same biases that
are part of the train data are also present in the test
data, as it is part of the same data set.

7 Conclusion

In this paper we investigated the origin and effect
of bias on automatic irony detection in Dutch. By
looking into the potential biases that could emerge
from the data, we found that these can be classified
into three categories: (1) positive sentiment words
(mostly adjectives), (2) intensifiers, interjections
and exclamations and (3) topical nouns. To investi-
gate whether our fine-tuned transformer model uses
these biases as trigger words, we evaluated the sys-
tem performance on subsets that specifically con-
tain those bias words (i.e. positive sentiment words
and intensifiers) and compared the results to mod-
ified samples where the adjectives were replaced
by synonyms and the intensifiers were removed. In
addition, we also investigated how our system mod-
els irony using three state-of-the-art explainability
techniques that assign feature attributions to each
of the sub-tokens in a text: Discretized Integrated
Gradients (DIG), Layer Integrated Gradients (LIG)
and Layer-wise Relevance Propagation(LRP). Af-
ter generating LRP attributions for every text in

our train set, we ranked the different sub-tokens
according to their average impact on the prediction.

Both of these methods support the hypothe-
sis that our fine-tuned system for irony detection
strongly relies on positive sentiment and is partic-
ularly triggered by intense positive sentiment. Al-
though some of the common topics of ironic tweets
are partially recognized as important and become
slightly more important when the intensifiers are
removed, the system generally does not pay too
much attention to them.

While intense positive sentiments are most com-
monly used in hyperboles or exaggerations, which
is a rhetorical device used to support the expres-
sion of irony, they are not the sole solution for
irony detection. As shown in our analysis, more
subtle irony can go undetected and genuinely pos-
itive texts are often wrongly classified as ironic.
Therefore, we attempted to use modified samples
with less intense sentiments to augment our train
data. Although there was no noticeable increase in
performance in the held-out test set, further testing
on new external data sets is needed to make reliable
conclusions.

For future research, we suggest further investi-
gating how these biases could be mitigated to make
sure genuine sentiment is not mistaken for irony.
This could either be done by further augmenting
the data or by adapting the model. A data-driven
approach we propose is to create counterfactual
samples, where an ironic tweet is made non-ironic
and the other way around. This is, however, no
simple feat due to the creativity in ironic expres-
sions. Likewise, our approach for creating mod-
ified samples can still be improved to result in a
fully-automatic framework for data augmentation.
As model adaptation, we propose improving the
system with additional features that, for example,
represent relevant common-sense knowledge. Fi-
nally, it would also be interesting to use human
annotations of trigger words for irony detection
and compare the perspectives of annotators to the
model explanation.
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8 Limitations

The primary limitation for this work is the diffi-
culty of telling the difference between mistakes
made by automatic systems and wrongly assigned
importances from the attribution techniques. Ad-
ditionally, our work currently only relies on a sin-
gle pre-trained model that was fine-tuned on the
currently only available data set for Dutch irony
detection. The patterns in computational modeling
we described only apply to this particular system
and data set and may very well differ when train-
ing a different model on data that was collected
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in a different way, where the data set may rely on
different patterns and biases. Finally, despite the
good agreement scores (a Cohen’s kappa of 0.84)
for binary irony classification, this remains a com-
plex task where annotators can be uncertain about
the label. In the end, the annotators for any irony
or sarcasm detection task can only make assump-
tions about what the author of a text intended to
convey. For our setup, both the annotators and the
automated system predict whether a text is ironic
without considering the corresponding context. In
a realistic setting, most social media texts are re-
actions to previous comments or external events
that can be essential in order to recognize the irony.
This means that the model predictions can differ
from the annotated label but still be a plausible
interpretation.
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