Advanced search
1 file | 3.18 MB Add to list

Deep learning image denoising in PET : quantitative impact on kinetic modelling and clinical metrics

Author
Organization

Downloads

  • Poster Pendergrass Muller.pdf
    • full text (Author's original)
    • |
    • open access
    • |
    • PDF
    • |
    • 3.18 MB

Citation

Please use this url to cite or link to this publication:

MLA
Muller, Florence Marie, et al. “Deep Learning Image Denoising in PET : Quantitative Impact on Kinetic Modelling and Clinical Metrics.” Pendergrass Research Symposium, Abstracts, 2023.
APA
Muller, F. M., Li, E. J., Gao, M., Pantel, A. R., Parma, M. J., Surti, S., … Karp, J. S. (2023). Deep learning image denoising in PET : quantitative impact on kinetic modelling and clinical metrics. Pendergrass Research Symposium, Abstracts. Presented at the Pendergrass Research Symposium, Philadelphia, Pennsylvania.
Chicago author-date
Muller, Florence Marie, Elizabeth J. Li, Min Gao, Austin R. Pantel, Michael J. Parma, Suleman Surti, Christian Vanhove, Stefaan Vandenberghe, Margaret E. Daube-Witherspoon, and Joel S. Karp. 2023. “Deep Learning Image Denoising in PET : Quantitative Impact on Kinetic Modelling and Clinical Metrics.” In Pendergrass Research Symposium, Abstracts.
Chicago author-date (all authors)
Muller, Florence Marie, Elizabeth J. Li, Min Gao, Austin R. Pantel, Michael J. Parma, Suleman Surti, Christian Vanhove, Stefaan Vandenberghe, Margaret E. Daube-Witherspoon, and Joel S. Karp. 2023. “Deep Learning Image Denoising in PET : Quantitative Impact on Kinetic Modelling and Clinical Metrics.” In Pendergrass Research Symposium, Abstracts.
Vancouver
1.
Muller FM, Li EJ, Gao M, Pantel AR, Parma MJ, Surti S, et al. Deep learning image denoising in PET : quantitative impact on kinetic modelling and clinical metrics. In: Pendergrass Research Symposium, Abstracts. 2023.
IEEE
[1]
F. M. Muller et al., “Deep learning image denoising in PET : quantitative impact on kinetic modelling and clinical metrics,” in Pendergrass Research Symposium, Abstracts, Philadelphia, Pennsylvania, 2023.
@inproceedings{01H2KBJS4D3PDEC56Z3EX7C3Y5,
  author       = {{Muller, Florence Marie and Li, Elizabeth J. and Gao, Min and Pantel, Austin R. and Parma, Michael J. and Surti, Suleman and Vanhove, Christian and Vandenberghe, Stefaan and Daube-Witherspoon, Margaret E. and Karp, Joel S.}},
  booktitle    = {{Pendergrass Research Symposium, Abstracts}},
  language     = {{eng}},
  location     = {{Philadelphia, Pennsylvania}},
  pages        = {{1}},
  title        = {{Deep learning image denoising in PET : quantitative impact on kinetic modelling and clinical metrics}},
  year         = {{2023}},
}