Advanced search
2 files | 1.67 MB Add to list

A conservative fourth-order real space method for the (2+1)D Dirac equation

Author
Organization
Project
Keywords
FINITE-DIFFERENCE SCHEME, SYMPLECTIC INTEGRATORS, DYNAMICS, FORMULATION, SIMULATION, CODE, Dirac equation, Higher-order FDTD, Partitioned Runge-Kutta, Conservative, methods, Poisson integrator, Numerical dispersion and stability

Downloads

  • 8260 acc.pdf
    • full text (Accepted manuscript)
    • |
    • open access
    • |
    • PDF
    • |
    • 516.30 KB
  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.15 MB

Citation

Please use this url to cite or link to this publication:

MLA
Vanderstraeten, Emile, and Dries Vande Ginste. “A Conservative Fourth-Order Real Space Method for the (2+1)D Dirac Equation.” JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, vol. 428, 2023, doi:10.1016/j.cam.2023.115149.
APA
Vanderstraeten, E., & Vande Ginste, D. (2023). A conservative fourth-order real space method for the (2+1)D Dirac equation. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 428. https://doi.org/10.1016/j.cam.2023.115149
Chicago author-date
Vanderstraeten, Emile, and Dries Vande Ginste. 2023. “A Conservative Fourth-Order Real Space Method for the (2+1)D Dirac Equation.” JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 428. https://doi.org/10.1016/j.cam.2023.115149.
Chicago author-date (all authors)
Vanderstraeten, Emile, and Dries Vande Ginste. 2023. “A Conservative Fourth-Order Real Space Method for the (2+1)D Dirac Equation.” JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 428. doi:10.1016/j.cam.2023.115149.
Vancouver
1.
Vanderstraeten E, Vande Ginste D. A conservative fourth-order real space method for the (2+1)D Dirac equation. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. 2023;428.
IEEE
[1]
E. Vanderstraeten and D. Vande Ginste, “A conservative fourth-order real space method for the (2+1)D Dirac equation,” JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, vol. 428, 2023.
@article{01GX31M9S3G4KK0HEX48ZSH5MS,
  articleno    = {{115149}},
  author       = {{Vanderstraeten, Emile and Vande Ginste, Dries}},
  issn         = {{0377-0427}},
  journal      = {{JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS}},
  keywords     = {{FINITE-DIFFERENCE SCHEME,SYMPLECTIC INTEGRATORS,DYNAMICS,FORMULATION,SIMULATION,CODE,Dirac equation,Higher-order FDTD,Partitioned Runge-Kutta,Conservative,methods,Poisson integrator,Numerical dispersion and stability}},
  language     = {{eng}},
  pages        = {{19}},
  title        = {{A conservative fourth-order real space method for the (2+1)D Dirac equation}},
  url          = {{http://doi.org/10.1016/j.cam.2023.115149}},
  volume       = {{428}},
  year         = {{2023}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: