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Abstract: Fine-grained sentiment analysis, known as Aspect-Based Sentiment Analysis (ABSA),
establishes the polarity of a section of text concerning a particular aspect. Aspect, sentiment, and
emotion categorisation are the three steps that make up the configuration of ABSA, which we
looked into for the dataset of English reviews. In this work, due to the fuzzy nature of textual
data, we investigated machine learning methods based on fuzzy rough sets, which we believe are
more interpretable than complex state-of-the-art models. The novelty of this paper is the use of a
pipeline that incorporates all three mentioned steps and applies Fuzzy-Rough Nearest Neighbour
classification techniques with their extension based on ordered weighted average operators (FRNN-
OWA), combined with text embeddings based on transformers. After some improvements in the
pipeline’s stages, such as using two separate models for emotion detection, we obtain the correct
results for the majority of test instances (up to 81.4%) for all three classification tasks. We consider
three different options for the pipeline. In two of them, all three classification tasks are performed
consecutively, reducing data at each step to retain only correct predictions, while the third option
performs each step independently. This solution allows us to examine the prediction results after
each step and spot certain patterns. We used it for an error analysis that enables us, for each test
instance, to identify the neighbouring training samples and demonstrate that our methods can extract
useful patterns from the data. Finally, we compare our results with another paper that performed the
same ABSA classification for the Dutch version of the dataset and conclude that our results are in line
with theirs or even slightly better.

Keywords: natural language processing; Aspect-Based Sentiment Analysis; fuzzy rough sets; text
embeddings

1. Introduction

Since the advent of social media at the beginning of this century, the analysis of the
wealth of user feedback written on these social platforms has become a vibrant research
domain in the domain of natural language processing. While the classic sentiment analysis
or opinion mining approaches mainly focused on determining the mood behind whole texts
(review, letter, article, and other), more fine-grained approaches have also been proposed
more recently, which give more insights into what exactly people like or dislike about a
given product or service. In the case of the Aspect-Based Sentiment Analysis (ABSA), the
task consists in determining the polarity of a part of the text describing a specific aspect of
a given product or service [1].

For example, for the analysis of the following restaurant review: “The pizza was
delicious, but the service was slow.”, we cannot use classical sentiment analysis to define
the general sentiment of the customer, as it is neither wholly negative nor entirely positive.
In this case, we can apply ABSA techniques, which will first determine what aspects of
this restaurant visit are discussed (“pizza” and “service”); each of these aspect terms will
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then be assigned to an aspect category (e.g., FOOD_quality and SERVICE_speed), after
which a sentiment label or even a more fine-grained emotion label will be assigned to each
of these aspect categories (for example, “positive” and “negative” or “satisfaction” and
“dissatisfaction”, correspondingly) [2].

This paper is one of the first attempts to apply fuzzy-rough-based methods to the
ABSA three-level task. Previously, such techniques were already used for various other ma-
chine learning tasks, including in sentiment analysis and emotion detection. In particular,
in [3–5], we investigated the application of fuzzy-rough methods for emotion categorisa-
tion, irony and hate speech detection. The datasets for these experiments originate from
different SemEval competitions (https://semeval.github.io/, accessed on 14 January 2023).
While the majority of the best-performing solutions submitted to these competitions were
based on neural networks or transformers, our solutions achieved comparable results and
were consistently ranked among the TOP-5 results, as demonstrated in [5]. At the same
time, we were able to provide interpretability of our solution (as also demonstrated in
Section 6), which is an important advantage when dealing with a subjective topic such as
emotions. In the current work, we will demonstrate that this interpretable solution also
obtains promising results for ABSA, predicting all three classes correctly for the majority of
test instances.

The remainder of the paper has the following structure: Section 2 provides an overview
of the most relevant studies about ABSA and our previous research. Section 3 gives a de-
tailed overview of the task and data which with we will work. Section 4 is a methodological
section, discussing data preprocessing, the embedding methods we explored and the struc-
ture of the pipelines we used. Section 5 discusses the results for the different experiments,
while in Section 6, we provide an error analysis of those results with examples showcasing
the explainability of our approach. Finally, Section 7 concludes our work and presents
some thoughts regarding future work.

2. Related Work

In this section, we review the general ABSA task and explain how it evolved into
its current form. We also discuss its use within SemEval competitions and introduce the
specific task we are working with. Next, we provide an overview of interpretability types
for text analysis models, and recall our own previous work on sentiment analysis using
fuzzy-rough methods.

2.1. ABSA Studies Summary

One of the first studies that presented a task similar to ABSA was [6] in 2004, where
the authors called this task “feature-based summary” or “feature-based opinion mining”.
They formulated a sentiment analysis task that contains three subtasks: (1) identifying the
specific product features about which customers left their opinion (referred to as product
features), (2) identifying review sentences that give positive or negative opinions for each
feature and (3) constructing a summary using the information that has been discovered.

Some years later, ref. [1] formulated ABSA as a task with two steps: aspect extraction
and aspect sentiment classification. While initially, lexicon-based and feature-based super-
vised learning approaches were applied to the ABSA task, the introduction of transformer-
based approaches in NLP also led to their application in ABSA. In [7], the authors presented
a solution where a BERT-based architecture outperformed all previous approaches with
a superficial linear classification layer. Later, in [8], the authors used adversarial training
on a general BERT and a domain-specific post-trained BERT for the two ABSA tasks men-
tioned before: aspect extraction and aspect sentiment classification. Meanwhile, in [9], a
knowledge-enabled language representation BERT-based model was introduced for the
ABSA task. This model could provide explainable results by leveraging extra information
obtained from a sentiment knowledge graph to navigate the input embedding of a sentence
with a BERT language representation model.

https://semeval.github.io/
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Recent studies targeting ABSA are primarily based on transformer-based models [8–10].
Particularly, in [10], the authors presented a transformer-based multi-task learning framework.
They called this solution the Cross-Modal Multitask Transformer, whose task is to deal with
Multimodal Aspect-Based Sentiment Analysis (MABSA), where aspect-sentiment tandems were
extracted from pairs of sentences and images.

ABSA was presented for the first time in the format of a shared task at SemEval
2014 Task 4 by [11]. The organisers presented several datasets of reviews for different
business types, where aspect terms and their corresponding polarities were annotated for
each sentence. They expanded their work in SemEval-2015 Task 12 [12], where all the
recognised components of the expressed opinions (i.e., aspects, opinion target expressions,
and sentiment polarities) were linked within sentence-level tuples in a framework, which
combined previously introduced subtasks into a single task. The organisers expanded
the previous task with text-level ABSA annotations in the following SemEval-2016 Task
5 [13]. They also expanded tasks to new domains and presented seven more languages
besides English.

2.2. Source of Our ABSA Dataset

The specific task that we were working on was provided by [2]. In their paper, the
authors presented the SentEMO platform, a tool which performs ABSA, but also ABEA
(Aspect-Based Emotion Detection), after which the results are visualised by means of
different dashboards. For both sentiment and emotion detection, they trained a model
established on transformer-based text embeddings and SVM classifiers for six domains for
the Dutch language. Moreover, the authors introduced a pipeline structure similar to the
one we will approach in our study, where the output of each step serves as the input for
the next one. The pipeline consists of four steps: (1) extraction of an aspect term, (2) aspect
category classification, (3) polarity classification (4) and emotion classification, where each
aspect thus is assigned a sentiment and an emotion. In our experiment, we will use the
English version of one of their datasets, described further in Section 3.

2.3. Interpretability for Text Classification Methods

Obtaining an understandable explanation for results predicted by transformer-based
approaches is generally very challenging. There are two primary options when discussing
the model interpretability for text analysis [14]. The first one establishes the “scale” of
explainability: local approaches provide an explanation for a single prediction, whereas
global ones do so for the entire prediction model.

From another angle, we can categorize interpretability techniques into two groups:
post-hoc interpretation and self-explanatory models. As an example of the first type, we
can consider Perturbed Masking [15], LIME (Local Interpretable Model-agnostic Explana-
tions, [16]), and SampleShapley [17]. The self-explanatory category includes the majority
of the current explainable NLP models, which are derived from, for example, the model’s
attention weights [18] or Variational Word Masks (VMASK, [19]).

In addition to differentiating between “global” vs. “local” and “self-explanatory”
vs. “post-hoc” solutions, Danilevsky et al. recognised five major explainability methods:
feature importance, surrogate models, example-driven techniques, provenance-based,
and declarative induction. If we take a look at two of the most widely used techniques
nowadays, viz. the attention mechanism [20] and first-derivative saliency [21], we can say
that they are part of the feature importance-based explanation methods. Another popular
technique are example-driven methods. Such approaches are usually typical for local-level
explainability models [22,23].

Since we represent text as high-dimensional embedding vectors to offer explanations
for the test instance’s predicted label by examining the nearby training examples, our
approach can be categorised as a local, self-explaining example-driven method. It differs
from usual transformer-based models that primarily use attention mechanism techniques;
thus, we are able to provide a distinct perspective.
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2.4. Description of Our Previous Work

Fuzzy rough set approaches have been successfully applied in different machine learn-
ing tasks [24], for example, in rule-based classifiers [25], imbalanced data learning [26],
fuzzy rough neural networks [27], etc. In our own previous work, we explored the us-
age of fuzzy-rough-based models for emotion classification tasks in [3–5], where we not
only showed that our results were competitive to the state-of-the-art, but also that fuzzy-
rough nearest neighbour classification methods allow for a more transparent detection of
particular patterns in the prediction process.

In [28], we investigated the effectiveness of the weighted k Nearest Neighbor (wkNN)
classifier for the emotion detection task. We performed our experiments on the emotion
intensity dataset released in the framework of SemEval-2018 Task 1 [29] and suggested
a pipeline combining the tweet cleaning and embedding methods. We also attempted to
enhance the information in the embeddings with emotion lexicons (dictionaries of words
and corresponding intensity scores of various emotions). The impact on the PCC scores,
however, was minimal. We implemented a fine-tuned ensemble of wkNN models based on
several embeddings in the final proposal, and we ended fourth in the competition.

In the following paper, ref. [3], we investigated the fuzzy-rough nearest neighbour
classification method extension with ordered weighted average (OWA) operators, known
as FRNN-OWA (explained in Section 4.3). We also used more preprocessing methods and
model confidence scores, which led us to third place in the same SemEval competition
leaderboard. Later, we applied this approach to more datasets, for example, sarcasm in [4]
and hate speech and irony in [5]. In the current paper, we investigate with which accuracy
the different subtasks of ABSA can be tackled with fuzzy-rough nearest neighbour-based
classification methods. If these methods perform on par with state-of-the-art neural method-
ologies, we may argue that they provide a valid alternative due to their transparency.

3. Data Description

As data for the experiments, we used FMCG (Fast Moving Consumer Goods) reviews
which were collected and manually labelled in the framework of the multilingual SentEMO
project (http://sentemo.org, accessed on 14 January 2023). The dataset consists of product
reviews, i.e., almost 900 reviews in the training set and nearly 400 in the test set. Each
review comprises one or more sentences, while each may contain several or no “aspect
terms”, which are words or collocations which have been assigned three labels, namely
an aspect class, sentiment class and emotion class (we will refer to them as “gold labels”).
This annotation is exemplified in Figure 1 for the term “breakfast”, which is assigned the
aspect class “Food&Drinks_general”, and for which a positive sentiment is expressed, as
well as the emotion, “joy”.

Figure 1. Annotation example of the user review with demonstration of aspect, sentiment, and
emotion classes of the defined term.

Each of these annotations results in a set of classification labels, which we will consider
as three separate tasks in the classification experiments:

• For the aspect category classification, we consider six main categories (“product”, “per-
sonnel”, “company”, “marcom”, “delivery”, and “packaging”; Figure 2b), and each
category is further divided into subcategories (“product_quality”, “product_general”,
etc.; Figure 2a), which results in a total of 29 classes.

• For sentiment classification, we distinguish five ordinal labels: “very positive”, “posi-
tive”, “neutral”, “negative”, and “very negative” (Figure 2c).

http://sentemo.org


Electronics 2023, 12, 1088 5 of 16

• For emotions, there are 12 associated labels: “anger”, “neutral”, “disgust”, “surprise”,
“trust”, “distrust”, “dissatisfaction”, “fear”, “joy”, “satisfaction”, “anticipation”, and
“sadness” (Figure 2d).

(a) Aspect classes distribution. (b) Aspect main classes distribution.
*

(c) Sentiment classes distribution. (d) Emotion classes distribution.

Figure 2. Histograms depicting class distribution for training data for each classification task.

For each of the three tasks, the class distribution is skewed, as is also clearly visualised
in Figure 2. While the large majority of instances fall within the “product” category, the
sentiment and emotion annotations are also primarily situated in 2 out of the available 5
(sentiment) or 12 (emotion) classes.

4. Methodology

In this section, we provide the theoretical background supporting our approach.
In Section 4.1, we briefly describe how the data were presented to us and which data
preprocessing steps we considered. Further, in Section 4.2, we list the text embedding
methods that we use to prepare the text for the classifiers that we describe in Section 4.3.
Finally, in Section 4.4, we discuss the evaluation metrics used to measure the quality of the
obtained predictions.

4.1. Data Preprocessing

For our experiments, we selected each term as a separate data instance with all
corresponding information, such as the ordinal number of the review, the original full
sentence, and the individual classification task labels. We decided not to use any additional
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text preprocessing to the text before its usage in the embedding methods in order not to
dismiss any potentially helpful information.

On the other hand, we tried to provide different text spans to the embedding method
(described in Section 4.2) and more specifically considered four options:

1. The target term (it can be one word or a collocation).
2. The sentence that contains our target term (this could be repeated for different in-

stances because one sentence can contain several terms).
3. The combination of the previous two vectors, or the so-called “merged” vector of term

and sentence vectors (in this way, this embedding vector’s length will be double the
previous one).

4. A window of terms, which means that we take into account the words around the
target term. We considered windows with sizes of three and five; if a sentence has
fewer words before or after the target term, we take as much as it has. We also tried
two approaches to apply the embedding: for the first approach, we compute the vector
embedding for each word in the window separately and then calculate its mean, while
for the second approach, we take the embedding of the whole piece of text.

4.2. Text Embeddings

To be able to use text in the fuzzy-rough classification models, we first need to trans-
form it into an N-dimensional vector form. Methods that perform such a task are called
“embedding models”, and they follow the same principle: similar pieces of text should
be represented in the N-dimensional space by close vectors. Since the original Word2Vec
models, first introduced in [30,31], embedding methods have come a long way, and the
state-of-the-art in the NLP field now focuses on transformer encoders. The original BERT
model was described in [32] with the idea of pre-training deep bidirectional represen-
tations using unlabelled text. The original BERT tasks were language modelling and
next-sentence prediction. However, to fine-tune this model, there is no need to modify its
architecture, and it can be achieved by adding extra output layers. In our work, we consid-
ered several BERT-based models, including the BERT and ALBERT models by TextAttack
(https://huggingface.co/textattack/bert-base-uncased-yelp-polarity, accessed on 14 Jan-
uary 2023) fine-tuned using the TextAttack package [33] and the YELP polarity dataset [34]
for the sequence classification task.

However, the best results for our experiments were obtained with the DistilBERT
Yelp Review Sentiment model (https://huggingface.co/spentaur/yelp, accessed on 14
January 2023) that was fine-tuned on one million reviews from the YELP dataset [34] for
the sentiment analysis task. The DistilBERT architecture is a lighter and faster version of
BERT that takes less time to fine-tune. As this particular DistilBERT model outperformed
both BERT and ALBERT models, in Section 5, we provide the results only for this best
embedding method.

All mentioned BERT-based models were fine-tuned on the YELP dataset that contains
user reviews from yelp.com, accessed on 14 January 2023. We chose such models due to
the similar nature of the data used for their fine-tuning and ours. Although these models
were used as classification/regression models for the sequence classification and sentiment
analysis tasks, we will use them as embedding models by extracting the encoded vector
representations of text.

4.3. Classification Methods

As a classification model, we considered two fuzzy rough set-based methods:

1. Fuzzy-Rough Nearest Neighbour (FRNN) is an instance-based classification model
proposed by [35], which classifies instances using their lower and upper approxima-
tions from fuzzy rough set theory. Particularly, we used the FRNN extension with
ordered weighted average (OWA) operators [36] called FRNN-OWA, as described
in [37]. To represent the similarity among our instances, we used cosine similarity.

https://huggingface.co/textattack/bert-base-uncased-yelp-polarity
https://huggingface.co/spentaur/yelp
yelp.com
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2. Fuzzy Rough OVO COmbination (FROVOCO) is also an instance-based algorithm,
introduced in [26]. FROVOCO is developed for multi-class classification and especially
for imbalanced tasks, which could be suitable given the imbalance present in our data.
It decomposes several classes into separate one-vs.-one and one-vs.-rest tasks. For
each pair, FROVOCO considers the constructed classes’ imbalance ratio to use specific
weights. For this method, we used the recommended Manhattan distance metric.

For both methods, we used additive weights—a vector with a length corresponding to
the parameter k (the number of neighbours) with linearly decreasing weights. We took both
implementations of FRNN-OWA and FROVOCO from [38] provided at the corresponding
GitHub page (https://github.com/oulenz/fuzzy-rough-learn, accessed on 14 January 2023).

4.4. Evaluation Metrics

We used three metrics to measure the performance of considered approaches, viz.
F1-score, accuracy, and Cost Corrected Accuracy (CCA).

The F1-score (1) corresponds to the harmonic mean of two other metrics: Precision
and Recall:

F1 =
2 × Precision × Recall

Precision + Recall
, (1)

where the Precision metric represents the ratio of correctly predicted labels out of all pre-
dicted labels, and Recall corresponds to the ratio of correctly predicted instances out of
all instances with ground-truth labels. F1-score is a suitable metric for an imbalanced
dataset. For our experiments, we calculated the weighted F1-score, which is first com-
puted for each label separately, and then the output is their average (weighted by support
scores) (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html,
accessed on 14 January 2023).

Another evaluation metric that we use in our experiments is accuracy. It corresponds
to the number of correctly predicted instances out of all instances in the dataset. It is not the
most suitable metric for imbalanced datasets. Still, in our case, it reflects how many data
instances are actually left after all the steps of the considered pipelines with data filtration
are passed.

As an alternative to accuracy, we also calculated the CCA metric, introduced by [39].
This metric applies to ordinal classification tasks only and is similar to accuracy. However,
CCA takes into account the cost of prediction. In other words, for ordinal classes, the
prediction of a class close to the actual one (i.e., to the gold label) should have a lower cost
than a prediction of a class which is further removed. As a simple example, we can consider
a polarity classification task with ordered labels “positive”, “neutral”, and “negative”.
Then, we can set up costs in a way that, for instance, with a gold label “positive”, a correctly
predicted label will have a cost of 0; a prediction of “neutral” has an associated cost of
1/2, while predicting the “negative” label will correspond to the full cost of 1. Based on
this information, we can construct a cost matrix, which is symmetrical with classes on the
rows and columns, 0 on the diagonal and the cost of each “prediction mistake” on other
positions. Then, having the confusion matrix Cf and a cost matrix Ct, we can calculate CCA
with Formula (2):

CCA = 1 − C f · Ct (2)

In this way, higher CCA scores will correspond to better methods in the same way as
accuracy, which can be observed as its special case with the cost of each prediction mistake
equal to 1. In our experiments, we can apply CCA only for the sentiment and emotion tasks
since, for aspect classification, we do not have ordered classes. For both those tasks, we
provided the cost matrices in Appendix A Tables A1 and A2, respectively.

4.5. Pipelines

While others have already investigated tackling some of the ABSA subtasks jointly [40–42],
the predominant methodology in ABSA is still a pipeline approach in which the first aspect
categorisation is performed, and after which the sentiment and emotion labels are predicted

https://github.com/oulenz/fuzzy-rough-learn
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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for the predicted aspect categories. These pipeline approaches are known to be sensitive to
error propagation, which might be even more the case for the imbalanced datasets we are
working with. In our experiments, we want to investigate different pipelines and their error
and more specifically study how fuzzy rough-set-based methods such as FRNN-OWA, but
also FROVOCO, which is specifically designed to handle imbalanced datasets, behave in
such a pipeline setup.

Before describing the actual pipeline for the ABSA task, we should mention some
preparatory steps that we performed. First of all, we aimed to detect the best classification
model setup for each task separately (i.e., aspect, sentiment, and emotion classification)
based on gold labels and cross-validation (CV) evaluation. For this purpose, for each task,
we computed predictions using various classification models and different text spans for
the text embeddings and tuned each model’s parameters. Through this, using CV, we were
able to define the best approach for each classification task.

These best models were then applied one by one, forming the “pipeline” for the ABSA
task. First, the best “aspect model” was applied to predict aspect classes for all test set
instances. Then, the best “sentiment model” was evaluated on the instances with correctly
predicted aspect labels, after which the “emotion model” was applied to the instances
which were correctly predicted in the previous step. Contrary to a normal test scenario, in
which we evidently do not have access to gold standard annotations, this approach of only
taking into account the correctly predicted instances for the next step primarily enabled us
to assess the error propagation throughout the classification pipeline.

We improved this baseline approach with two modifications. First of all, as was
showcased in Figure 2a, the class distribution of the aspect categories is highly imbalanced.
Since there was simply too little training data for the large majority of aspect categories, we
generalised the 29 aspect classes into 6 main categories as discussed in Section 3. A second
modification we considered is splitting the emotion models into positive and negative ones.
We thus divided the gold emotion labels into two groups; some of them we joined into one
emotion class due to the similar nature of the emotions and the small size of their classes:

1. Three positive emotions: joy combined with anticipation and “positive” surprise
(instances that have emotion gold label “surprise” and sentiment gold labels “positive”
or “very positive”); satisfaction; and trust.

2. Five negative emotions: anger; disgust; dissatisfaction; distrust merged with fear; and
sadness combined with “negative” surprise (instances that have emotion gold label
“surprise” and sentiment gold labels “negative” or “very negative”).

For the model tuning on the gold standard, we divided the training instances into
two groups based on their gold emotion labels (positive and negative). However, for
the pipeline approach, the approach had to be different. Since we base our emotion
prediction step on sentiment classification results, we use the predicted sentiment labels
to divide instances into three groups. We combine all instances with “positive” and “very
positive” sentiment labels and apply a positive emotion model setup. A similar procedure
is conducted for the “negative” and “very negative” sentiment labels. The remaining
instances have a “neutral” sentiment label and are automatically assigned the “neutral”
emotion. We call the described pipeline “System 1”, which is illustrated in Figure 3. To
illustrate how System 1 works, we can take a look at the test example: “The staff was very
friendly, but the breakfast could have been better”. “Staff” has the gold labels “personnel” as
aspect category, “positive” as sentiment and “joy” as emotion; the corresponding labels for
“breakfast” are “food&drinks”, “negative” and “dissatisfaction”. If System 1, for example,
erroneously predicts “breakfast” as “very negative”, this instance will not be taken into
account anymore for emotion prediction.

We also considered a more relaxed pipeline. For “System 2” (Figure 4), we perform
data reduction with the cost matrices described in Section 4.4. Since the first step (aspect
classification) is not an ordinal task, and we do not have a cost matrix for it, this approach is
only relevant for the latter two tasks. While in System 1, we only kept instances for further
processing when they had a cost of “0”; we now also keep instances with a cost “0.5”. This
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modification allows us to bring more instances to the emotion detection step. However, the
scores for aspect and sentiment detection evidently will remain the same.

When we come back to our test example and use System 2 on it, we predictably
will receive the same aspect and sentiment labels as System 1. However, the cost of
our sentiment classification mistake will be 0.5, which is acceptable. The subsequent
emotion detection step leads to the predicted emotional class, “dissatisfaction”, which is
actually correct.

Figure 3. System 1: pipeline of three classification tasks in sequence with modifications in the form of
aspects’ main categories prediction and two emotion models.

Figure 4. System 2: a modification of System 1, where after the sentiment prediction step, data
reduction is performed based on misclassification cost.

Finally, in “System 3”, we make our three classification steps independent (Figure 5)
of each other, giving us an idea of the performance of each of the classifiers on the complete
test data. In fact, this third system can be observed as the upperbound for the previous two
pipeline systems, in which a test instance is only counted correct if all three classification
predictions are correct.

Figure 5. System 3: three independent classification tasks on the full test set with no data reduction.

5. Results

In this section, we provide the results obtained from our experiments. First, in
Section 5.1, we describe the best model setup tuned for each classification task based
on gold labels. Then, in Section 5.2, we provide results for our three systems based on the
models from Section 5.1.

5.1. Detecting the Best Setup for Each Classification Task

To achieve the highest possible scores in the pipeline, we should be sure that we
receive the best results on each classification step. With this idea, we tuned the best model
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for each task of the three classification steps: aspect category classification, sentiment
and emotion classification. For each of them, we compared two classification models
(FRNN-OWA and FROVOCO), four text spans for the text embedding technique (term,
sentence, window of words and combined vectors of term and sentence), and finally tuned
the model parameter k (the number of neighbours), trying odd values from 1 to 29. We
used the F1-score for the fivefold cross-validation to evaluate the results based on gold
labels. The obtained scores are provided in Table 1. All provided results are presented for
the DistilBERT text embedding.

Table 1. Best setup for each individual classification task: aspect, sentiment and emotion prediction.

Task Model k Text Span F1 CV

Aspect Main Categories FRNN-OWA 3 merged 0.9036
Sentiment FROVOCO 9 w5 whole 0.7289
Positive Emotions FRNN-OWA 9 merged 0.8273
Negative Emotions FROVOCO 5 merged 0.7025

In Table 1, “Aspect Main Categories” corresponds to the aspect classification task with
six main category classes, while “Positive Emotions” and “Negative Emotions” stand for
the positive and negative emotion models explained in Section 4.5. When we consider
the text spans, “merged” means the merged vector of term and sentence, and “w5 whole”
stands for the usage of an embedding vector generated for the text span obtained with a
window size of five around the target term.

From Table 1, we can observe that we obtained the highest F1-score for the aspect
classification task and the lowest for the negative emotion prediction. Regarding the
classification model of choice, FRNN-OWA and FROVOCO are both selected as best
classifier for two of the four classification tasks. As for the text spans, we can say that the
option of the “merged” vector was always better than the terms and the sentence vectors.
A window of terms approach only outperformed the merged vector setup once, namely
for the sentiment classification task. A window with size five and an embedding taking
into account the whole text span was always the strongest approach compared to the other
windows’ setups.

5.2. Systems

Once we obtained the best setup for each classification task, we combined them in
the three systems described in Section 4.5. For each system, we measured the F1-score,
accuracy, and CCA for each of the three classification tasks: aspect, sentiment and emotion
classification. The results for all three systems are provided in Table 2.

Table 2. Results for all classification tasks for the three systems.

System Aspect Sentiment Emotion

F1 Acc CCA F1 Acc CCA F1 Acc CCA

1 0.8406 0.8627 - 0.7147 0.6756 0.7268 0.5647 0.4872 0.5697

2 0.6155 0.5598 0.6564

3 0.7740 0.7846 0.8458 0.6851 0.7012 0.8142

As we can observe from Table 2, the separate systems from System 3 yield perfor-
mances of 86.3% for aspect categorisation (accuracy), 84.6% for sentiment analysis (CCA)
and 81.4% for emotion detection (CCA). When we consider the first two pipeline systems,
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the results evidently drop because an error in the previous step negatively impacts the
following step. Furthermore, the cost-driven filtering of the instances seems to pay off.

6. Error Analysis

We manually explored some correctly and incorrectly predicted test instances for
each classification task to assess the performance of our FRNN approach. In doing so, we
went back into our solution to find neighbouring training instances to the considered test
instance. For each classification task’s best setup, we calculated the top k nearest neighbours
to the target test instance and examined those neighbours in order to find patterns in these
neighbouring instances.

First, we considered a test sample that obtained the wrong sentiment prediction for
all systems:

Example 1. In fact, I will likely buy a second.

From here on, for each example we will label a term with an underline. For Example 1,
its gold aspect main label “product” was correctly predicted by all three systems. However,
the gold sentiment label “positive” was misclassified by all systems as “negative”. It leads
to no emotion prediction for Systems 1 and 2 when System 3 predicted “dissatisfaction”,
which is the opposite to gold “trust”, but was logical for the predicted negative sentiment.

Taking a look at the training neighbours for the sentiment task (Table 3), we can observe
that the majority of them represent negative feedback. Those examples demonstrate that
they all have a common topic—the impression of the product that influences the user’s
decision to repurchase it or to recommend this product to others. We can suggest that due
to the high amount of examples where users were dissatisfied with their products, we can
have a lot of negative neighbours for our test example, which leads to a wrong prediction.
Hence, the same topic can be a substantial similarity feature for our approach.

Table 3. Training neighbour instances for Example 1.

The Full Sentence Sentiment

I plan to return this item and look for a higher quality air purifier. Negative

I will probably not choose Cottonelle Ultra next time around. Negative

I would recommend it for sure, but now I do not have this equipment. Positive

I would HIGHLY suggest you choose another fan, as this one seems to
be nothing but one disaster after another. Very negative

Second, we take a look at a test sample, where the sentiment was wrong with a
low cost:

Example 2. We use these in our bathrooms and kitchen and believe they work very well.

Again, the aspect class “product” was predicted correctly by all systems, while the
gold sentiment label “very positive” was predicted as “positive”. Because of that, System 1
cannot predict emotion; however, System 2 can because the cost of this mistake is 0.5, and
we allowed it. Due to this, System 2 predicts the “satisfaction” emotion, which corresponds
to the prediction of System 3 and the gold label.

If we take a look at some of the neighbouring training instances (Table 4), we can
observe that all neighbours are either “positive” or “very positive”, so it is easy to confuse.
Meanwhile, we can also notice an interesting pattern—the common thing among those
neighbours is not a topic but rather positive words, such as “work well” (the same colloca-
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tion as in the test example), “very professional”, “very happy”, and others. We can conclude
that words with high emotional colouring could be a trigger for our similarity algorithm.

Table 4. Training neighbour instances for Example 2.

The Full Sentence Sentiment

I have worked with them and I think they work well. Positive

They are very responsive, very professional and very present when we
need them. Very positive

We are very happy with the product, the machines are reliable and perform. Very positive

They work well and the one we have mounted in our small bathroom helps
cut down on the heat in that room, which really builds up as it does not
receive air conditioning like the rest of our home.

Positive

Third, we considered a test example, where all systems guessed the sentiment correctly:

Example 3. It has NO SENSOR for odor detection; therefore, it will not automatically change the
fan setting if unwelcomed odors were to invade the space.

While the gold aspect main label “product” and gold sentiment label “negative”
were correctly predicted by all three systems, for the emotion label, all systems made a
mistake, as instead of the gold emotion label “anger”, for each system “dissatisfaction” was
predicted. To investigate that, we can take a look at the neighbouring training instances to
the corresponding test one in Table 5.

While the majority of neighbours have the label “dissatisfaction” (or “anger”), actually,
the closest sentence by meaning is the first sentence that is labelled with “satisfaction”.
However, the content of the first neighbour seems rather disappointing and negatively
toned. In this way, we can confirm our preliminary conclusions that the common topic
seems to be a strong feature that marks the neighbours. Moreover, we can notice that some
training instances can have confusing or even unsuitable labels. We cannot dismiss the fact
that similar emotions, such as anger and dissatisfaction, could be easily confused due to
the subjectivity of emotions, which again shows the usefulness of the CCA metric.

Finally, we take a look at some test examples that were predicted with a wrong aspect
label (gold aspect classes are provided between brackets):

Example 4.

1. This shampoo did not come spilled, packaged to perfection. (“packaging”)
2. There are good sales people. (“personnel”)
3. Dishonest company and seller. (“company”)

All those texts were predicted as “product”, which can be expected due to the huge
unbalance of the data. For this reason, we have no predictions for the sentiment and
emotion labels from Systems 1 and 2; meanwhile, System 3 predicted them correctly
for each sample (“positive” and “satisfaction” for Example 4(1) and Example 4(2), and
“negative” and “distrust” for Example 4(3)). What is curious about those examples is that
they all are quite short and still have some emotionally strong words that can appear in
their neighbours: “perfect” for the first, “good” for the second, and “dishonest” (“horrible”,
“awful”) for the third.

To conclude, we can say that human emotions are very subjective concepts that can
lead to contradictory instance labelling and unexpected patterns chosen by the system.
By a manual analysis of the output and the nearest neighbours of both the OWA-FRNN
and FROVOCO systems, we can inspect which instances lead to a given classification
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decision, gaining more insights in the underlying data. This not only enables us to find
some explanations for classification decisions, but can also aid us in pinpointing errors,
shortcomings or even biases in the underlying data as a basis for improving our future work.

Table 5. Training neighbour instances for Example 3.

The Full Sentence Emotion

Unfortunately, upon installing and turning on the air purifier, the output air had
a chemical odor smell that is similar to what other reviewers have been
describing since 2018.

Satisfaction

The error messages with calibrators are annoying though, because they always
show up, and it does not say which error it is . Dissatisfaction

Due to the characteristics of immunoassay designs, especially in the free ideas in
the measurement of two-step methods, interference and transport disturbances
of thyroid hormones are reduced.

Dissatisfaction

Your AB and screen choice can be set to activate when you raise your arm, but
there is an irritating delay, even when set to the arm raise’s sensitive setting. Anger

7. Conclusions and Future Work

In this work, we have considered two fuzzy rough set-based machine learning tech-
niques for the task of Aspect-Based Sentiment Analysis. It gives novelty to our solution
since interpretability was not investigated much for considered emotion-detection tasks
before, as well as the usage of DL-based and BERT-based embedding techniques with
the instance-based fuzzy-rough-based approaches. We used them to approach the ABSA
task, which in our setup consists of three subtasks: aspect, sentiment and emotion clas-
sification, and which we tackle using a pipeline approach. For each of these subtasks,
we implemented the fuzzy rough set-based methods FRNN-OWA and FROVOCO using
transformers-based text embeddings and showed high results on the test data (up to 0.86
accuracy score for aspect categorisation, 0.84 CCA for sentiment analysis and 0.81 CCA
for emotion detection). In addition, our solution is interpretable in a local, self-explaining,
example-driven way. Through error analysis, we demonstrated that our approaches could
identify helpful patterns from the results that can update future models.

Since [2] used the Dutch version of the dataset, while we were working with an English
one, we could not thoroughly compare our results. However, we used the same evaluation
metrics, such as F1-score and CCA, to approximate the quality of our performance. In
general, we can observe that our results were in line (classification of sentiment and
emotions) or even slightly higher (classification of main aspects).

In future work, we plan to address the problem of unbalanced data and explore a
more systematic method to analyse the solution’s interpretability. Moreover, we can try to
apply the extracted patterns from the previous models to improve the next ones.
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Appendix A. Cost Matrices

Table A1. Sentiment Cost Matrix.

Negative Neutral Positive Very_Negative Very_Positive

Negative 0 0.5 1 0.5 1
Neutral 0.5 0 0.5 0.5 0.5
Positive 1 0.5 0 1 0.5
very_negative 0.5 0.5 1 0 1
very_positive 1 0.5 0.5 1 0

Table A2. Emotion Cost Matrix.
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Anger 0 1 0.25 0.5 0.25 0.25 1 0.75 0.25 1 0.25 1
Anticipation 1 0 1 1 1 1 0.25 0.75 1 0.5 0.25 0.25
Disgust 0.25 1 0.25 0.5 0 0.25 1 0.75 0.25 1 0.25 1
Dissatisfaction 0.5 1 0.5 0 0.5 0.5 1 0.5 0.5 1 0.25 1
Distrust 0.25 1 0 0.5 0.25 0.25 1 0.75 0.25 1 0.25 1
Fear 0.25 1 0.25 0.5 0.25 0 1 0.75 0.25 1 0.25 1
Joy 1 0.25 1 1 1 1 0 0.75 1 0.5 0.25 0.25
Neutral 0.75 0.75 0.75 0.5 0.75 0.75 0.75 0 0.75 0.5 0.75 0.75
Sadness 0.25 1 0.25 0.5 0.25 0.25 1 0.75 0 1 0.25 1
Satisfaction 1 0.5 1 1 1 1 0.5 0.5 1 0 0.25 0.5
Surprise 1 0.25 1 1 1 1 0.25 0.75 1 0.5 0.25 0
Trust 0.25 0.25 0.25 0.5 0.25 0.25 0.25 0.75 0.25 0.5 0 0.25
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