CenDerNet : center and curvature representations for render-and-compare 6D pose estimation
- Author
- Peter De Roovere (UGent) , Rembert Daems (UGent) , Jonathan Croenen, Taoufik Bourgana, Joris de Hoog and Francis wyffels (UGent)
- Organization
- Project
- Abstract
- We introduce CenDerNet, a framework for 6D pose estimation from multi-view images based on center and curvature representations. Finding precise poses for reflective, textureless objects is a key challenge for industrial robotics. Our approach consists of three stages: First, a fully convolutional neural network predicts center and curvature heatmaps for each view; Second, center heatmaps are used to detect object instances and find their 3D centers; Third, 6D object poses are estimated using 3D centers and curvature heatmaps. By jointly optimizing poses across views using a render-and-compare approach, our method naturally handles occlusions and object symmetries. We show that CenDerNet outperforms previous methods on two industry-relevant datasets: DIMO and T-LESS .
- Keywords
- Object detection, 6D object pose estimation, Industrial robotics, Render-and-Compare, Curvature maps
Downloads
-
DS606 acc.pdf
- full text (Author's original)
- |
- open access
- |
- |
- 3.99 MB
-
(...).pdf
- full text (Published version)
- |
- UGent only
- |
- |
- 2.55 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-01GSSRRT111G3T3MQE77BSZ7MR
- MLA
- De Roovere, Peter, et al. “CenDerNet : Center and Curvature Representations for Render-and-Compare 6D Pose Estimation.” Computer Vision : ECCV 2022 Workshops : Proceedings, Part VIII, vol. 13808, Springer, 2023, pp. 97–111, doi:10.1007/978-3-031-25085-9_6.
- APA
- De Roovere, P., Daems, R., Croenen, J., Bourgana, T., de Hoog, J., & wyffels, F. (2023). CenDerNet : center and curvature representations for render-and-compare 6D pose estimation. Computer Vision : ECCV 2022 Workshops : Proceedings, Part VIII, 13808, 97–111. https://doi.org/10.1007/978-3-031-25085-9_6
- Chicago author-date
- De Roovere, Peter, Rembert Daems, Jonathan Croenen, Taoufik Bourgana, Joris de Hoog, and Francis wyffels. 2023. “CenDerNet : Center and Curvature Representations for Render-and-Compare 6D Pose Estimation.” In Computer Vision : ECCV 2022 Workshops : Proceedings, Part VIII, 13808:97–111. Cham: Springer. https://doi.org/10.1007/978-3-031-25085-9_6.
- Chicago author-date (all authors)
- De Roovere, Peter, Rembert Daems, Jonathan Croenen, Taoufik Bourgana, Joris de Hoog, and Francis wyffels. 2023. “CenDerNet : Center and Curvature Representations for Render-and-Compare 6D Pose Estimation.” In Computer Vision : ECCV 2022 Workshops : Proceedings, Part VIII, 13808:97–111. Cham: Springer. doi:10.1007/978-3-031-25085-9_6.
- Vancouver
- 1.De Roovere P, Daems R, Croenen J, Bourgana T, de Hoog J, wyffels F. CenDerNet : center and curvature representations for render-and-compare 6D pose estimation. In: Computer Vision : ECCV 2022 Workshops : proceedings, part VIII. Cham: Springer; 2023. p. 97–111.
- IEEE
- [1]P. De Roovere, R. Daems, J. Croenen, T. Bourgana, J. de Hoog, and F. wyffels, “CenDerNet : center and curvature representations for render-and-compare 6D pose estimation,” in Computer Vision : ECCV 2022 Workshops : proceedings, part VIII, Tel Aviv, Israel, 2023, vol. 13808, pp. 97–111.
@inproceedings{01GSSRRT111G3T3MQE77BSZ7MR, abstract = {{We introduce CenDerNet, a framework for 6D pose estimation from multi-view images based on center and curvature representations. Finding precise poses for reflective, textureless objects is a key challenge for industrial robotics. Our approach consists of three stages: First, a fully convolutional neural network predicts center and curvature heatmaps for each view; Second, center heatmaps are used to detect object instances and find their 3D centers; Third, 6D object poses are estimated using 3D centers and curvature heatmaps. By jointly optimizing poses across views using a render-and-compare approach, our method naturally handles occlusions and object symmetries. We show that CenDerNet outperforms previous methods on two industry-relevant datasets: DIMO and T-LESS .}}, author = {{De Roovere, Peter and Daems, Rembert and Croenen, Jonathan and Bourgana, Taoufik and de Hoog, Joris and wyffels, Francis}}, booktitle = {{Computer Vision : ECCV 2022 Workshops : proceedings, part VIII}}, isbn = {{9783031250842}}, issn = {{0302-9743}}, keywords = {{Object detection,6D object pose estimation,Industrial robotics,Render-and-Compare,Curvature maps}}, language = {{eng}}, location = {{Tel Aviv, Israel}}, pages = {{97--111}}, publisher = {{Springer}}, title = {{CenDerNet : center and curvature representations for render-and-compare 6D pose estimation}}, url = {{http://doi.org/10.1007/978-3-031-25085-9_6}}, volume = {{13808}}, year = {{2023}}, }
- Altmetric
- View in Altmetric