
Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural
networks

Jonas Van Gompel∗, Domenico Spina, Chris Develder

IDLab, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, 9052, Ghent, Belgium.

Abstract

The energy losses and costs associated with faults in photovoltaic (PV) systems significantly limit the efficiency and
reliability of solar power. Since existing methods for automatic fault diagnosis require expensive sensors, they are only
cost-effective for large-scale systems. To address these drawbacks, we propose a fault diagnosis model based on graph
neural networks (GNNs), which monitors a group of PV systems by comparing their current and voltage production
over the last 24 h. This methodology allows for monitoring PV systems without sensors, as hourly measurements of the
produced current and voltage are obtained via the PV systems’ inverters. Comprehensive experiments are conducted by
simulating 6 different PV systems in Colorado using 6 years of real weather measurements. Despite large variations in
number of modules, module type, orientation, location, etc., the GNN can accurately detect and identify early occurrences
of 6 common faults. Specifically, the GNN reaches 84.6%±2.1% accuracy without weather data and 87.5%±1.6% when
satellite weather estimates are provided, significantly outperforming two state-of-the-art PV fault diagnosis models.
Moreover, the results suggest that GNN can generalize to PV systems it was not trained on and retains high accuracy
when multiple PV systems are simultaneously affected by faults.
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1. Introduction

The globally rising average temperature is having a
visible impact on our planet, including an increased fre-
quency and intensity of heat waves, wildfires and storms [1].
The International Energy Agency reports that the average
temperature is currently 1.1 °C higher than in the pre-
industrial era and that exploiting solar energy will play
a key role in halting this rising trend [2]. To this end,
increasing the number of photovoltaic (PV) installations
and maximizing their efficiency is crucial. Although the
efficiency of PV cells has been steadily improving, faults
in PV systems cause significant energy losses and damage,
especially if these faults remain undetected for years [3].
Therefore, performing predictive maintenance by detect-
ing and identifying early manifestations of faults in PV
systems is essential to maximize their efficiency and life-
time. The increase in extreme weather events due to
climate change will also give rise to more thermal and
mechanical stresses in PV systems, further increasing the
need for widespread PV fault diagnosis.

Faults that occur in PV systems include short circuits,
wiring degradation, hot spots, etc. Although most faults
can be diagnosed through visual inspection by technicians
or infrared thermography via drones, these techniques are
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only cost-effective for large-scale PV systems, meaning
most PV systems remain unmonitored [4].

Fault diagnosis methods based on artificial intelligence,
and specifically machine learning, provide an interesting
alternative for monitoring PV systems. These methods
avoid the need to define system-specific thresholds and do
not necessarily require expensive sensors, while retaining
high accuracy [5]. Various machine learning-based fault
diagnosis techniques have been proposed [6]. According to
the principle adopted to detect and identify faults, these
can be divided into the following five categories:

1) Comparing the expected and measured out-
put of the PV system. This is a straightforward and
commonly adopted methodology [7–14]. The expected
output can be predicted by either physics-based PV sim-
ulations [7, 9, 10] or via regression [11, 12]. In both cases,
ambient weather conditions, such as irradiance and tem-
perature, are required as inputs to obtain the expected
power output.

The methods proposed in [11] and [12] both predict
the power output using a multilayer perceptron, which is
a type of artificial neural network. In [11], faults are de-
tected by defining a threshold on the difference between
the expected and measured power output. Similarly, the
technique proposed in [12] determines thresholds on 1kHz
voltage and current measurements to classify faults. These
high-frequency measurements allow for accurate identifi-
cation of the fault type, but are costly to gather, trans-
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mit and process. Instead of using a multilayer perceptron
to predict the power output, the method proposed in [7]
combines threshold rules and a multilayer perceptron to
facilitate accurate fault identification. This method per-
forms fault diagnosis using characteristics of the I-V curve
as inputs, which provide more information than simply
the current and voltage at maximum power point (MPP).
Unfortunately, an I-V curve tracer is required at the PV
system site to gather this data.

Despite the apparent simplicity of using thresholds,
defining optimal threshold rules requires expert knowledge
and becomes increasingly complex as more fault types are
considered [5]. The methods proposed in [9] and [10] per-
form fault diagnosis using exclusively probabilistic neural
networks and gradient boosted trees, respectively. The
downside of avoiding threshold rules is that the technique
is less interpretable, since most machine learning models
are black boxes.

Instead of relying on weather sensors at the PV system
site, the technique proposed in [13] obtains the expected
current and voltage via reference PV modules. The ra-
tio of the measured and expected output is then classified
as normal, short or open circuit via the local and global
consistency algorithm, which is based on semi-supervised
clustering in a graph [13]. Although this method does not
require installation of weather sensors, the fault diagno-
sis will fail if any fault occurs in the reference modules.
Another alternative approach is to use satellite estima-
tions of the irradiance and temperature as inputs [14].
This method requires neither weather sensors nor refer-
ence modules. However, the weather estimation errors
caused by the satellite negatively impact the fault diagno-
sis accuracy.

2) I-V curve classification. The PV system’s I-V
characteristics curve provides substantially richer informa-
tion than solely the produced current and voltage at max-
imum power point (Impp and Vmpp) [15]. Hence, several
methodologies have been proposed to perform fault diag-
nosis based on I-V curves. For instance, the authors of [15]
manually define relevant parameters from I-V curves, based
on the analysis of I-V curves under various fault and weather
conditions. These parameters are used as input for a ker-
nel extreme learning machine, which accurately classifies
the input as either normal or one of the four considered
faults. A similar methodology was proposed in [16], where
a set of fuzzy classifiers performs fault diagnosis using pa-
rameters which are extracted from I-V curves. As opposed
to manually defining variables from I-V curves, deep learn-
ing models were proposed in [17] and [18] to automat-
ically extract features from the raw I-V curves. These
methods use a convolutional neural network and ResNet,
respectively, to identify faults based on I-V curves, irradi-
ance and ambient temperature measurements. Note that
the on-site sensor requirements to gather both I-V curves
and weather measurements make these methods relatively
costly to implement.

3) Identifying fault transients in Impp and Vmpp.

When monitoring the produced current and voltage with
sufficiently high temporal resolution, transient behavior
can be detected at the moment a fault occurs. More-
over, particular types of faults give rise to different foot-
prints in the transient, allowing identification of the fault
type [20]. Different models have been proposed which
adopt this methodology; including models based on ran-
dom forests [20, 22], wavelet packet transforms [19] and
convolutional neural networks [21].

A significant drawback of this methodology is that not
all faults can be detected. Faults which cause a gradual
reduction of power output, such as wiring degradation or
potential induced degradation (PID), do not give rise to
transient behavior and will therefore remain undetected.
Moreover, a fault transient generally lasts at most a few
seconds [20]. If the transient is missed because the mon-
itoring is interrupted, the fault cannot be detected after-
wards via these methods. Finally, the sensors required to
gather high-frequency current and voltage measurements
are expensive, leading to a high implementation cost for
this methodology. For instance, the 1 kHz measurements
used in [19] are collected by sensors which cost over e 5000.

4) Comparing output of adjacent PV modules.
Generally, the power produced by each module in a PV
system is very similar, given that the modules have the
same orientation. Therefore, each module can be moni-
tored by comparing its output to the output of adjacent
modules. For example, a convolutional neural network has
been proposed in [23] to detect faulty modules in this man-
ner. Similarly, a random forest classifier proposed in [24] is
able to identify open circuit, shading and snow cover. Ad-
ditionally, the random forest retains high accuracy when
multiple modules are simultaneously suffering from faults.
Note that all methods based on this methodology assume
that the power production per module is known, mean-
ing it is only suitable to monitor PV systems which are
equipped with micro-inverters instead of the more com-
mon string inverter.

5) Comparing output of nearby PV systems.
Much like adjacent PV modules, the power generated by
geographically nearby PV systems is highly correlated.
These correlations can be exploited to perform PV fault
diagnosis using only the power produced by each PV sys-
tem, which is readily available at the inverter. Hence,
this methodology is compelling because it does not require
weather measurements, reference modules, I-V curves, high-
frequency measurements or micro-inverters, leading to sig-
nificantly lower implementation costs compared to the ap-
proaches presented so far. An example of this methodol-
ogy is presented in [25], where random forest regression is
used to predict a PV system’s output based on the output
of nearby PV systems. Subsequently, faults are detected
via a threshold on the difference between predicted and
measured power output.

Table 1 summarizes the discussed methodologies and
papers. Although the fault diagnosis accuracy is an impor-
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Methodology Ref.
Machine learning

model
Inputs

Implemen-
tation cost

# identified
fault types

Comparing expected
and measured PV

output

[7]
Multilayer
perceptron

• I-V curve
• Irradiance
• Module temperature

High 6

[8] Ensemble model
• Impp & Vmpp

• Irradiance
• Module temperature

Medium 2

[9]
Probabilistic

neural network

• Impp & Vmpp

• Irradiance
• Module temperature

Medium 2

[10]
Gradient boosted

trees

• Impp & Vmpp

• Irradiance
• Ambient temperature

Medium 4

[11]
Multilayer
perceptron

• Pmpp

• Irradiance
• Ambient temperature

Medium Detection only

[12]
Multilayer
perceptron

• High-frequency Impp & Vmpp

• Irradiance
• Ambient temperature

High 5

[13]
Local and global

consistency
algorithm

• Impp & Vmpp

• I & V of reference modules
Medium 2

[14]
Recurrent neural

network

• Impp & Vmpp

• Satellite irradiance
• Satellite ambient temperature

Low 6

I-V curve classification

[15]
Kernel extreme
learning machine

• I-V curve Medium 4

[16] Fuzzy classifier • I-V curve Medium 3

[17]
Convolutional
neural network

• I-V curve
• Irradiance
• Ambient temperature

High 4

[18] ResNet
• I-V curve
• Irradiance
• Ambient temperature

High 5

Identifying fault
transients in I & V

[19]
Wavelet packet
transforms

• High-frequency Impp & Vmpp High Detection only

[20]
Multi-grained
cascade forest

• High-frequency Impp & Vmpp High 3

[21]
Convolutional
neural network

• High-frequency Impp & Vmpp

• I & V of reference module
High 2

[22] Random forest
• High-frequency I per substring
• High-frequency Vmpp

High 4

Comparing output of
adjacent PV modules

[23]
Convolutional
neural network

• Pmpp per module Medium Detection only

[24] Random forest • Pmpp per module Medium 3

Comparing output of
nearby PV systems

[25] Random forest • Pmpp Low Detection only

Proposed
method

Graph neural
network

• Impp & Vmpp Low 6

Table 1: Overview of recently proposed PV fault diagnosis techniques based on machine learning.3



tant aspect of the proposed methods, this is not included
in the table, because the methods were all evaluated on
different datasets. This prohibits an objective comparison
of accuracy.

From the discussion above, it becomes apparent that
comparing the output of a group of nearby PV systems
provides an interesting approach to monitor PV systems
without relying on expensive sensors, unlike most existing
methods. Nevertheless, this approach is only followed by
the method proposed in [25], which is limited to fault de-
tection. As described in Section 2 and visualized in Fig. 1,
a group of PV systems can be naturally represented as a
graph. Since graph neural networks (GNNs) are the only
type of deep learning models that can readily take graph
structures as input [26], we believe that GNNs are well-
suited for fault detection and identification of PV systems.
Additionally, as described in Section 5, a trained GNN can
take any number of PV systems as input, in contrast to
other types of neural networks (fully-connected, convolu-
tional, recurrent, etc.). This property enables monitor-
ing of new PV systems without retraining the model. To
the best of our knowledge, ours is the first work adopting
GNNs for fault diagnosis of PV systems.

Section 2 outlines our technique, while Section 3 and
Section 4 describe the collection and preprocessing of the
data, respectively. Section 5 provides an overview of the
GNN modeling principles. In Section 7, the performance
of the developed model is compared to two state-of-the-
art PV fault diagnosis methods, which are based on gra-
dient boosted decision trees [10] and recurrent neural net-
works [14]. The architecture and training algorithm of
the three models are presented in Section 6. The main
contributions of this work are:

• A graph neural network (GNN) solution is devel-
oped to monitor a group of nearby PV systems. The
proposed method is designed to have a minimal im-
plementation cost: in contrast to existing PV fault
diagnosis techniques, our model does not require any
additional sensors beyond hourly current and volt-
age measurements, which are readily available from
the inverter.

• The GNN accurately detects and identifies six rele-
vant fault types by comparing the current and volt-
age produced by the PV systems during the past
24 h. We experimentally demonstrate that our GNN
is an accurate and general fault diagnosis model,
outperforming two recently proposed methods. More-
over, we show that the GNN remains accurate when
multiple PV systems suffer from faults at the same
time.

• By incorporating information about the distance and
relative orientation between PV systems in the edge
features of the GNN, our model learns to take into
account the differences between the PV systems and
can generalize to PV systems it was not trained on.

Figure 1: The proposed PV fault diagnosis methodology. In this
figure, wiring degradation is identified in PV system 2, based on
current and voltage measurements of all PV systems.
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Hence, a trained GNN can be applied to new PV sys-
tems without requiring retraining. Combined with
the low implementation cost, these properties make
the proposed method especially cost-effective for res-
idential PV systems.

2. Methodology

Our objective is to monitor a group of nearby PV in-
stallations by comparing their produced output. Besides
the produced current and voltage of each PV system, other
relevant variables include the distance, altitude difference
and relative orientation between all PV systems. This
highly structured data is most naturally represented as a
graph (see Fig. 1), suggesting that GNNs are a suitable
tool to monitor a group of PV systems.

The machine learning model is trained using super-
vised learning, where its parameters are optimized to pro-
duce the desired output corresponding to each input. Sup-
pose that PV system 6 in Fig. 1 is experiencing a short
circuit, while the other PV systems are working correctly.
The desired outputs of the GNN are then ‘no fault’ for PV
systems 1–5 and ‘short circuit’ for PV system 6. Machine
learning models need to be trained on a large amount of
data to offer high prediction accuracy. Since collecting
sufficient data from faulty PV systems in the field is both
expensive and potentially dangerous, we use physics-based
PV simulations to generate large amounts of synthetic
training data, as described in Section 3. After training,
the GNN is evaluated on unseen testing data, i.e., data
containing days or even PV systems which are not in the
training data.

The proposed methodology, which is visualized in Fig.
1, compares the current and voltage produced during the
last 24 h. Hourly current and voltage measurements can
be readily collected from the PV inverters, meaning no
sensors need to be installed. For each PV system, the
24 h window is first processed by recurrent neural network
layers, allowing to take the temporal nature of the data
into account. The features extracted from the current and
voltage of site i are then given to the graph node corre-
sponding to site i. The edge features of the graph are
based on the orientations and geographical locations of
the PV systems. Therefore, these are indicated as ‘known
variables’ in Fig. 1. Specifically, each edge contains the
distance and altitude difference between the two sites it
connects. Furthermore, each edge also contains the dif-
ference in tilt and azimuth between the two PV systems.
The constructed graph is used as input for the GNN lay-
ers. The output of the model consists of the predicted
status of each PV system: either no fault or one of the six
considered faults.

3. Simulated PV systems and faults

Since collecting large amounts of real data from faulty
PV arrays is infeasible, we generate synthetic training

Site PV module type
Number of modules
(series × parallel)

Tilt Azimuth

1 SW 325 XL duo 6× 3 15° 180°
2 Scheuten P6-60 i30 15× 1 25° 90°
3 Scheuten P6-60 i30 10× 2 35° 135°
4 SW 325 XL duo 12× 1 45° 270°
5 SW 325 XL duo 8× 2 30° 225°
6 Scheuten P6-60 i30 4× 3 20° 160°

Table 2: Configuration and orientation of each PV system. The
numbering of sites corresponds to the map in Fig. 1.

Module parameter
SW 325
XL duo

Scheuten
P6-60 i30

Number of cells (series × parallel) 24× 3 20× 3
Maximum power (Pmpp) 325W 230W
Maximum power point voltage 37.7V 29.3V
Maximum power point current 8.68A 7.84A
Open circuit voltage (VOC) 47.0V 37.2V
Short circuit current (ISC) 9.28A 8.31A
Temperature coefficient of Pmpp −0.43%/K −0.42%/K
Temperature coefficient of VOC −0.31%/K −0.30%/K
Temperature coefficient of ISC 0.044%/K 0.040%/K

Table 3: PV module parameters at standard test conditions of the
two module types in Table 2.

Figure 2: The PV system of site 1 and the investigated faults. Figure
adapted from [14].

5



Fault type Description Simulated severities

Open circuit Disconnection in the wiring. Disconnection of a (sub)string.

Short circuit
Accidental low-resistance path between two points
in the PV system.

Short circuit of 1, 2, 3 or 4 modules in a (sub)string.

Wiring
degradation

Increased series resistance of PV modules. Set resistor in Fig. 2 to 5Ω, 10Ω, 15Ω or 20Ω.

Partial
shading

Local shading cast by clouds, chimneys, trees, etc.
Reduced irradiance of 1, 2, 3 or 4 modules in a (sub)string
by 50% during low sun (zenith larger than 60°).

Soiling Accumulation of dust on the surface of PV modules. Reduced irradiance of all modules by 5%, 10%, 15% or 20%.

PID (shunting
type)

Electrochemical degradation due to large voltage
differences, leading to leakage current between PV
cells and the array’s frame. The PID simulation is
described in [27].

PID severities corresponding to a 5%, 10%, 15% or 20%
loss of average power output.

Table 4: Description of the PV system faults considered in this work.

data via physics-based PV simulations [28]. As described
in [28], the PV simulation is based on the well-established
single-diode model. The accuracy of the PV simulation
has been experimentally validated in [28, 29], where the
power output predictions are compared to measurements
of a residential PV system in Oldenburg, Germany. The
predicted power output is significantly more accurate than
predictions of the commercial simulation tool PVsyst [30],
illustrating that the employed PV simulation effectively
models real PV systems [28, 29].

To provide realistic weather input for the simulations,
we let each site in Fig. 1 correspond to a measurement sta-
tion of the National Renewable Energy Laboratory (NREL).
These weather measurements are publicly available [31]
and were collected throughout 2012–2018 for sites 1–4 and
2012 for sites 5 and 6. Days with missing weather mea-
surements for one or more sites were removed from the
dataset. Over the 6 years, 168 days were removed in to-
tal.

Generally, a group of residential PV systems will have
varying orientations, number of PV modules, electrical
configurations and module types. Hence, different values
for these parameters are randomly chosen for each site,
within reasonable bounds. The PV system configuration
and orientation for each site are listed in Table 2. The
characteristics of the 2 module types used in this work are
detailed in Table 3.

The PV system at site 1 is visualized in Fig. 2, along
with the six fault types which are considered in this work.
These faults are described in Table 4. For each fault type,
four severities are included in the dataset to ensure that
faults cannot be distinguished by simply comparing their
severities. Where possible, the fault severities are chosen
to be in the 5%–20% range. Hence, the models must be
able to identify faults that reduce the power output by
as little as 5%, which is challenging. However, such early
identification of faults is crucial to maximize the efficiency
and lifetime of PV systems. Note that only one severity
of open circuit is considered because all modules of PV

systems 2 and 4 are connected in series, so there is only
one string which can be disconnected.

4. Data preprocessing

Most PV systems are not equipped with dedicated cur-
rent and voltage sensors. Hence, we assume that the pro-
duced current and voltage will be measured by the inverter
to minimize the implementation costs. As inverter mea-
surements can contain significant measurement errors, we
include 5% uniformly distributed noise in the simulated
current and voltage.

Many machine learning models assume that input fea-
tures have similar scales [32], e.g., that the values of all
input features lie within the interval [0, 1]. The input fea-
tures of the proposed GNN model are listed in Fig. 1.
In this work, we divide each input feature by its nomi-
nal maximum value so their scales become comparable.
The maximum current and voltage produced by a PV sys-
tem highly depend on the number of modules, the mod-
ule characteristics and how the modules are connected.
This is taken into account when normalizing the current
and voltage, allowing the model to generalize to different
PV system configurations. Following [20], the current and
voltage produced by PV system i are normalized via

I′ =
I

pi · ISC, i

V′ =
V

si ·VOC, i
,

where pi and si represent the number of substrings and the
number of panels in series of PV system i, respectively,
while ISC, i and VOC, i are the short circuit current and
open circuit voltage of the modules in PV system i. The
normalization is performed for each timestep, so the entire
current and voltage time series are normalized. All other
input features are normalized by simply dividing by the
constants defined in Table 5.
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Input feature Constant

Distance 100 km
Altitude difference 2 km
Azimuth difference 360°
Tilt difference 90°
Irradiance 1000W/m2

Temperature 50 °C
Zenith 360°

Table 5: Normalization constants of the input features. Note that
irradiance, temperature and zenith are only used when satellite
weather data is included as input (see Section 7.1).

Each hour, the GNN model predicts the status of all
PV systems based on measurements during the past 24 h
(see Fig. 1). This is achieved by sliding a window of 24 h
over the input time series. Note that we do not consider
transitions from, e.g., fault-free conditions to suddenly ap-
pearing faults within a 24 h sample. Including such sam-
ples with transitions is left for future work.

The GNN model receives the current and voltage pro-
duced by all PV systems as input. We are free to choose
in which PV systems we introduce faults to train and test
the model. We first include at most one faulty PV sys-
tem as follows. Each time the sliding window slides to a
new hour, one PV system is randomly selected to have
its output reduced by a fault during that 24 h window.
This procedure is repeated for each fault type and sever-
ity, where the same weather data is reused every time.
Note that we also include the case where all PV systems
operate normally throughout the 6 years. Second, we will
explore the GNN’s performance when faults occur in mul-
tiple PV systems simultaneously. This will be discussed
in Section 7.4.

5. Graph neural network background

As outlined in Section 2, GNNs provide a promising
model architecture for fault diagnosis of a group of PV
systems. In this work, we consider undirected graphs de-
fined by the tuple (V, E). Here, V is the set of nodes
{v1, . . . ,vNv

}, where Nv is the number of nodes and vn

represents the features of node n. Likewise, E represents
the set of edges {e1, . . . , eNe

}, where Ne is the number of
edges and ej represents the features of edge j, such as the
distance between two PV systems.

During training, a GNN layer updates both the edge
and node features of the graph, as visualized in Fig. 3.
First, the features of each edge ej are updated to new
values e′j based on the features of the two nodes vlj and
vrj which the edge j connects:

e′j = fe
(
ej ,vlj ,vrj

)
with j = 1, . . . , Ne (1)

Note that each edge is updated using the same function
fe, which is often a multilayer perceptron. Similarly, each
node vn is then updated using a second multilayer percep-
tron fv. Let Sn be the set of edges which are connected to

node n. The features of each edge vn are updated to new
values v′

n based on E′
n, which is the aggregated features

of the edges that are connected to node n.

v′
n = fv (vn, E

′
n)

with E′
n =

∑
k∈Sn

e′k and n = 1, . . . , Nv
(2)

Note that the edge features can be aggregated by any func-
tion which is invariant to permutations of its inputs and
can take any number of inputs [26]. The latter require-
ment stems from the fact that a node can be connected to
an arbitrary number of edges. Hence, the summation in
Eq. (2) can be replaced by mean, maximum, etc.

Since fe and fv are applied to, respectively, all edges
and nodes in a graph, these functions can be applied to
any graph. Consequently, a single GNN can be trained
on graphs with varying number of nodes and / or edges.
Moreover, GNNs can make predictions for graphs which
were not in its training data. This property will be ex-
ploited in Section 7.3 to monitor PV systems which are
not in the training data.

6. Machine learning models

The accuracy of the proposed GNN model is compared
to two state-of-the-art models, namely CatBoost [33] and
stacked GRU (gated recurrent unit) [14]. The three mod-
els are visualized in Fig. 4. CatBoost is a machine learning
model based on gradient boosted decision trees and was re-
cently proposed for PV fault diagnosis [10]. The stacked
GRU model is a recurrent neural network developed for
PV fault diagnosis [14]. In the following, the structure
and training algorithm of these three models are detailed.

6.1. Stacked GRU model architecture

The GRU model introduced in [14] consists of a GRU
block with two stacked GRU layers and a residual connec-
tion over the second layer, followed by two fully-connected
layers with ReLu and softmax activation functions, respec-
tively. Both GRU layers have a hidden dimension of 64
with 50% recurrent dropout and layer normalization. The
first fully-connected layer has hidden dimension 128 , while
the fina layer has output dimension 7 (i.e., the number of
output classes). Note that the GRU model from [14] also
includes dedicated layers to estimate the fault severity.
However, we omit these severity layers because severity
prediction is not considered in this work.

6.2. GNN model architecture

The proposed GNN model is shown in Fig. 4. Since its
inputs include time series, the GRU block is again used to
automatically extract features from the 24 h windows of
produced current and voltage. Note that the same GRU
block is applied consecutively to the 24 h window of each
PV system, i.e., the parameters of the GRU block are
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(a) Original graph (b) Update each edge via Eq. (1) (c) Update each node via Eq. (2)

Figure 3: Operations performed by a GNN layer. In (b), the blue edge is updated with fe, which uses the black nodes as inputs. This is
performed for each edge in the graph. Similarly, (c) shows the update of the blue node using the sum of the features of the connected edges
as input. Figure adapted from [26].

Figure 4: Schematic representation of the models’ architectures.
Note that in the GNN model, the same GRU block is used to process
each site. The dimensions of the passed feature tensors are denoted
next to each arrow, where Nv is the number of sites and Nf is the
number of input features of the GNN. More details regarding the
input dimensions of the models are given in Section 6.4.

shared across PV systems. This ensures that the model
can still take any number of PV systems as input, even
when the model is already trained (see also Section 5).
Without the GRU layers (i.e., when the flattened input
vector of length 24Nf is fed directly into the first GNN
layer), the model cannot properly take the time dimension
of the data into account, resulting in an accuracy loss of
roughly 8%.

The two fully-connected layers from [14] are now re-
placed by two XENet layers, which is a particular type of
GNN layer [34]. The first XENet layer takes the features
extracted from the 24 h windows of all PV systems as in-
put, where the features from PV system i are given to the
graph node corresponding to PV system i. The input edge
features are straightforwardly determined from the orien-
tations and geographical locations of the PV systems and
remain constant over time. Since we represent a group of
PV systems as a graph, we can freely choose which nodes
in the graph to connect with edges. For simplicity, we only
construct complete graphs, i.e., we connect each node to
all other nodes. This means that the number of edges
scales as O(N2

v ) for a graph with Nv nodes, which can
become prohibitively large if many PV systems are mon-
itored. In that case, one could opt to only connect nodes
if the distance is lower than a suitable threshold.

XENet was chosen over more well-known types of GNN,
such as graph convolutional networks (GCN) [35], because
XENet supports edge features, unlike GCN. Moreover, for
the task at hand, XENet outperforms other GNN types
which support edge features, such as edge-conditioned con-
volutional networks [36] and crystal graph convolutional
networks [37]. The XENet implementation of the Python
package Spektral [38] was used. The first XENet layer has
hidden dimension 64, ReLu activation and 20% dropout,
while the final XENet layer has output dimension 7 with
softmax activation.

6.3. CatBoost

CatBoost is a state-of-the-art gradient boosting model
proposed in [33] and applied to the PV fault diagnosis
task in [10]. CatBoost performs ordered boosting of deci-
sion trees to prevent overfitting and reduce computational
complexity. The default values of CatBoost’s hyperparam-
eters, as defined in [33], achieved the highest accuracy.
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6.4. Input of the models

A key difference between the three models is the struc-
ture and dimensions of their input. The GNN first pro-
cesses the 24 h windows ofNv PV systems one by one using
its GRU layers. Each 24 h window has dimensions 24×Nf ,
where Nf is the number of input features. Hence, Nf is 2
when only the produced current and voltage are given as
input and 5 when satellite weather data is also included
(see Section 7.1). The extracted features of all PV sys-
tems are then given to the nodes of the GNN layer, while
each edge receives the distance and difference in altitude,
azimuth and tilt between the two PV systems it connects.
Since each node has an edge with all other nodes, the di-
mensions of the input edge features are Nv ×Nv × 4.

The GRU model operates on a single PV system at
a time and is unable to take the distance and difference
in altitude, azimuth and tilt between the monitored PV
systems into account. To make the comparison with GNN
fair, we include each PV system’s altitude, azimuth and
tilt in the input of the GRU model. Therefore, an input
sample of the GRU model is a 24 × (Nf + 3) matrix. As
CatBoost does not take the time dimension of the data
into account, its input is a vector of size 24(Nf + 3).

Since GRU operates on a single PV system at a time,
a different model could be trained for each PV system.
However, training one GRU model on data of all PV sys-
tems results in a very similar performance. Moreover,
the latter approach performs much better when the GRU
model is tested on PV systems it was not trained on (see
Section 7.3), since the model has already seen multiple
different PV systems and thus generalizes better. The
same holds true for CatBoost. Therefore, both models are
trained on data from all PV systems.

6.5. Training algorithm

Since identifying faults in PV systems is essentially
a classification problem, the models are trained by min-
imizing the cross-entropy loss [32]. The loss function is
weighed to compensate for the class imbalance in the data.
Specifically, four severities of each fault type are included
in the data, except for no fault and open circuit, which
only have one configuration (see Section 3). Accordingly,
samples with no fault and open circuit have weight 4 in
the loss function of CatBoost and GRU, while all other
samples have weight 1. For GNN, the no fault class is
significantly more prominent in the data because at most
one of the PV systems is faulty, as described in Section 4.
Therefore, the class imbalance in the loss of GNN is com-
pensated by assigning weight 0.06 to no fault samples,
which is the inverse of the prevalence of the no fault class.
For open circuit, this is 4, as before. Note that all accu-
racies reported in this work are also balanced using these
weights to obtain a representative view of the models’ per-
formance.

Both neural networks are trained using batch size 64
and the Adam optimizer [39]. During training, the learn-
ing rate γ(t) at optimization step t is gradually decreased

as follows

γ(t) =
γ0

1 + λt
=

2 · 10−3

1 + 5 · 10−5 t
.

All models are thoroughly evaluated using 5-fold cross-
validation. In each fold, a different year of the data is
kept separate as test set, which is solely used to evaluate
the trained model. For the remaining data, the order of
the days is shuffled and 100 days are randomly selected as
validation set, while the rest is used to train the model.
The validation set is used for hyperparameter tuning and
early stopping, where training is stopped prematurely if
the accuracy on the validation set failed to improve com-
pared to the previous training epoch. This can help pre-
vent overfitting [32].

7. Results and discussion

7.1. Performance with satellite weather data

First, we compare the accuracy of the models when
both satellite weather estimations and the produced cur-
rent and voltage are given as input. The input time se-
ries now consists of: I, V, irradiance, temperature and
solar zenith. This is essentially the same setting the GRU
model was originally tested in [14]. The satellite weather
data of Denver is obtained from MERRA-2 and is freely
available [40]. The satellite estimations of irradiance and
temperature are for the entire state of Denver, not for the
specific locations of the PV systems. Consequently, the
models receive the same satellite estimations for each site,
which can significantly deviate from the true weather con-
ditions. For instance, the mean absolute error between
the satellite-derived irradiance and the true irradiance at
site 1 is 51.1W/m2.

After training the models until convergence, which took
roughly 8 h for CatBoost and 1.5 h for both GRU and
GNN, the results reported in Table 6 were obtained. The
models were trained and tested on data from PV systems
1–4, for which we have 6 years of data. The results on
PV systems 5 and 6 will be discussed in Section 7.3. Ta-
ble 6 shows the accuracy averaged over sites 1–4 because
the per-site accuracies are all very similar. For instance,
the highest per-site accuracy GNN reached over all cross-
validation iterations is 88.8% for site 4, while the lowest
accuracy is 86.3% for site 1.

The confusion matrices of the models for the first cross-
validation fold are shown in Fig. 5. GNN significantly
outperforms both CatBoost and stacked GRU, especially
when distinguishing between no fault and soiling. As
noted in [14], this is difficult for GRU and CatBoost due to
the inaccuracy of the satellite weather estimation. Specif-
ically, both irradiance overestimations by the satellite and
soiling give rise to an irradiance input for the models which
is larger than what the modules are exposed to in reality.
The GNN is superior in distinguishing these similar effects
because it is able to compare the output of multiple PV
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CatBoost GRU GNN

Satellite
weather,
I & V

I & V
only

Figure 5: Confusion matrix of the models on the test set. In the top row, satellite weather data is included in the input. Conversely, in the
bottom row, only the produced current and voltage are given as input. For each fault, the reported accuracy percentages are averaged over
all severities. The grey column and row represent the precision and recall, respectively.

Accuracy (%)

Inputs CatBoost GRU GNN

Satellite weather, I & V 79.8± 2.4 82.3± 2.9 87.5± 1.6
I & V only 73.0± 2.4 72.7± 2.7 84.6± 2.1

Table 6: Average accuracy on sites 1–4 over the 5-fold cross-
validation, with 3 times the standard deviation over the cross vali-
dation folds as error margins.

systems. Irradiance overestimations cause all PV systems
to produce less than expected, whereas soiling is more
likely to affect a limited number of PV systems.

7.2. Performance without satellite weather data

Thanks to the GNN’s ability to compare the output
of PV systems, it should be able to operate without any
weather input. This task is complicated by the fact that
each PV system has a different orientation, meaning that
the output of the PV systems at a given hour cannot be
readily compared. For instance, the output of a southern
facing PV system will peak earlier in the day than the
output of a western facing system. By giving both 24 h
windows and the relative orientations of the PV systems
as input, GNN can learn to adjust for this complication.

To explore the potential to operate without weather
information, we only provide the produced current and
voltage as input time series to the models. The results are
also shown in Table 6. Note that GNN without weather

input outperforms CatBoost and GRU even when the lat-
ter do have access to satellite weather data. The confu-
sion matrices of the models without weather inputs are
presented in Fig. 5.

As expected, the accuracy loss for GNN is limited. Al-
though CatBoost and GRU perform significantly worse
without weather data, they are still able to reach over 70%
accuracy. This is surprising, considering that both mod-
els cannot compare a PV system’s output to weather data
nor to the output of other PV systems. A possible expla-
nation is that CatBoost and GRU infer ‘expected’ current
and voltage time series from the training data, such as the
average production of a PV system without faults. The
models can then try to predict the fault type by compar-
ing its input with its expected current and voltage. Note
that these expectations could be tuned to the season: dur-
ing winter, 24 h windows will contain more hours without
power production because the days are shorter. Hence,
depending on the number of hours without power produc-
tion, the models can expect higher current and voltage
production during summer than during winter. This could
explain why CatBoost and GRU do not fail completely
without satellite weather input.

7.3. Unseen PV systems

As described in Section 5 and Section 6.2, a trained
GNN can make predictions for any graph, and can thus
also be applied to topologies that differ from those in the
training data. Here, we exploit this property to monitor
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Accuracy (%)

Inputs Site CatBoost GRU GNN

Satellite weather, I & V
5 65.4 79.5 86.8
6 57.6 70.0 62.2

I & V only
5 59.6 64.0 83.7
6 55.6 65.5 62.2

Table 7: Accuracy on sites 5 and 6, which are not in the training or
validation set of the models.

unseen PV systems without retraining. For this purpose,
the GNN is trained on a graph of sites 1–4 using 5 years
of data, as before, while it is now tested on a graph of all
6 sites. Because only data of 2012 is available for sites 5
and 6, this is the only year suitable as test set, meaning
cross-validation is not possible. Table 7 shows the result-
ing accuracy on the test set, both for the case with and
without satellite weather data. Note that even though the
GNN makes predictions for all 6 sites, only the accuracies
on the unseen sites 5 and 6 are reported in Table 7. Sim-
ilarly, the reported CatBoost and GRU accuracies are for
models trained on sites 1–4 and tested on sites 5 and 6.

These results show that GNN trained on sites 1–4 suc-
cessfully generalizes to site 5, where it reaches an accu-
racy similar to its accuracy on sites 1–4. This is especially
impressive considering that the tilt, azimuth, number of
modules and module configuration of site 5 are all different
compared to sites 1–4. The GNN also outperforms Cat-
Boost and GRU for site 5. However, GNN performs signif-
icantly worse for site 6, where GRU achieves the highest
accuracy. This is likely due to the relatively large dis-
tance between site 6 and the other sites: GNN assumes
that the weather experienced by all PV systems is compa-
rable, which is not necessarily the case for site 6 since its
nearest site is 196 km away (see Fig. 1). Hence, GNN can
be applied to new PV systems without retraining, as long
as the new PV system is not too isolated from the others.

7.4. Multiple faulty PV systems

So far, we have assumed that at most one of the PV
systems is suffering from a fault. However, faults can
occur simultaneously in different PV systems, especially
when a large number of PV systems is being monitored
by the GNN. Therefore, we loosen the above assumption
and adjust the data so that at least one PV system op-
erates normally, while all other PV systems suffer from
randomly chosen fault types and severities. Note that this
is only relevant for the GNN, as the other models operate
on one PV system at a time. In this setting, the GNN
reaches 86.1%±2.2% accuracy with satellite weather data
and 82.6% ± 2.5% accuracy without satellite data. Al-
though these accuracies are lower than for the case with
at most one faulty PV system, as reported in Table 6, the
deviation does not exceed the error margins of the cross-
validation. Furthermore, we considered an extreme case

where nearly all PV systems in the group are simultane-
ously faulty, which is unlikely to occur in practice. These
results demonstrate that the GNN retains high accuracy
even when multiple PV systems suffer from faults simul-
taneously.

7.5. Limitations of the proposed method

When developing a fault diagnosis method, it is key
to consider the trade-off between accuracy and implemen-
tation cost. Here, we have chosen to prioritise low im-
plementation cost over accuracy to obtain a method that
is applicable and cost-effective for both small and large-
scale PV systems. Therefore, one of our objectives was to
only use inverter measurements as input, instead of relying
on dedicated sensors. Clearly, our GNN solution can be
outperformed by methods that do rely on dedicated sen-
sors, which are reported to reach accuracies of over 99%
[9, 15, 22].

In contrast to CatBoost, GRU and most fault diagno-
sis models in literature, GNN does not perform well for an
isolated PV system: in our test case, GNN fails for site 6
because it is over 196 km away from the other sites, as de-
scribed in Section 7.3. However, such isolated PV systems
are only common in sparsely populated regions. More-
over, if an isolated PV system includes multiple inverters,
GNN can be applied by representing each string as a node
in the graph, so that the model performs fault diagnosis
by comparing the output of the strings. Therefore, our
model is also suitable to monitor a single, large-scale PV
system. In this scenario, the GNN is likely to be highly
accurate, considering all strings experience essentially the
same weather when they are next to each other.

Although a single GNN can monitor any number of
PV systems, we have tested the model on a limited num-
ber of PV systems for now. Therefore, it is not yet clear
how well the proposed method scales when implemented
to hundreds or thousands of PV systems, located around,
e.g., a given city. Nevertheless, it is likely that the accu-
racy of GNN further rises as the number of monitored PV
systems increases, because the output of a PV system can
be compared to additional nearby PV systems.

Finally, the GNN model predicts a single fault type
per PV system. However, a PV system could suffer from,
e.g., both wiring degradation and PID at the same time.
Although GNN would likely classify this PV system as
either wiring degradation or PID, it cannot identify both
faults simultaneously. To address this limitation, the GNN
should be extended to perform multi-label classification,
allowing to identify simultaneously occurring faults. This
is left for future work.

8. Conclusions

A graph neural network (GNN) is proposed for detect-
ing and identifying faults in photovoltaic (PV) systems by
comparing their produced current and voltage. As out-
lined in the literature overview, state-of-the-art PV fault
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diagnosis methods still rely on expensive on-site sensors.
The proposed methodology is able to monitor PV systems
based solely on current and voltage measurements from
the inverter. Since no sensors need to be installed, this
methodology is cost-effective and straightforward to im-
plement.

The GNN model is extensively validated and compared
to existing state-of-the-art methods. The results show
that the GNN is able to accurately monitor a group PV
systems with widely varying configurations and orienta-
tions. The model even generalizes to PV systems which
were not in the training data, provided that all PV sys-
tems are located sufficiently close to each other (e.g., near
the same city) so they are exposed to similar weather con-
ditions. Consequently, a single GNN could monitor all PV
systems in a city and does not necessarily need to be re-
trained when new PV systems are included. Finally, we
demonstrated that the model is also robust to the case
where multiple PV systems are simultaneously faulty.
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