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Abstract

We study the problem of safety stock placement in a supply chain with market
selection decisions. A manufacturer with deterministic, load-dependent lead time sup-
plies multiple warehouses, each serving multiple retailers. Each retailer has access to a
set of potential markets with different characteristics. Serving more markets increases
revenues, but also increases the manufacturer’s lead time, resulting in higher inventory
costs. Adopting the Guaranteed Service Approach, we present a nonlinear mixed in-
teger programming model and reformulate it to eliminate integer variables related to
service times at warehouses. We then propose a successive piecewise linearization algo-
rithm and a mixed-integer conic quadratic formulation to solve the resulting nonlinear
binary formulation. Computational experiments show that the successive piecewise lin-
earization algorithm outperforms two state-of-art solvers, BARON and CPLEX, which
are used to solve instances of the original formulation and the mixed-integer conic
quadratic reformulation, respectively. The value of incorporating load-dependent lead
times is greatest when capacity is limited relative to available demand. The benefit
of integrating market selection and safety stock decisions is greatest when capacity is
limited and marginal revenue is relatively low.

Keywords: Supply chain management, load-dependent lead time, safety stocks, guaranteed
service, market selection.

1 Introduction

The safety stock placement problem determines which nodes in a supply chain network

should hold safety stocks and in what quantity to achieve a desired service level under

stochastic demand. We adopt the Guaranteed Service Approach (GSA) (Eruguz et al.,

2016) under which each inventory location quotes a guaranteed outgoing service time within

which all customer orders will be delivered with certainty. Most studies assume exogenous
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demand over which the firm has no control. In practice, however, the firm faces the demands

of many distinct customers or markets, allowing it to choose which to serve (Bakal et al.,

2008; Geunes et al., 2009). However, the higher revenue achieved by serving more markets

may be offset by increased production, inventory and backordering costs. Hence aligning

marketing, production and inventory decisions is essential to profitability (Jalali et al., 2019).

We consider a supply chain consisting of a manufacturer with load-dependent lead time

supplying multiple warehouses each of which, in turn, supplies multiple retailers. Each

retailer has access to a set of potential markets with different demand distributions, revenues,

and outgoing service time requirements. Serving a market commits the firm to satisfying

its entire demand; rejecting it foregoes that market’s entire revenue. All warehouses and

retailers are potential safety stock holding locations, following a periodic-review base-stock

policy with a common review period. Queueing theory (Buzacott and Shanthikumar, 1993;

Curry and Feldman, 2000; Hopp and Spearman, 2011) has shown that the average cycle time

at the manufacturer is a convex non-decreasing function of its average utilization, which is

determined by the total demand of the accepted markets. Accepting more markets increases

revenue, but also the manufacturer’s utilization and hence its lead time and inventory costs,

eventually reducing profit.

The problem can be formulated as a mixed-integer nonlinear program (MINLP) with a

non-convex objective function. We first reformulate the problem to eliminate the integer

variables related to the service times at warehouses, and linearize all bilinear terms. We then

propose a successive piecewise linearization algorithm and a mixed-integer conic quadratic

formulation. Computational experiments show that the successive piecewise linearization

algorithm outperforms BARON, a state-of-the-art non-convex solver, and CPLEX, which is

used to solve instances of the mixed-integer conic quadratic reformulation. Numerical ex-

periments on a serial system with a single market show that the amount of demand accepted

is increasing in manufacturing capacity, while the manufacturer’s lead time is decreasing.

Experiments on a distribution network show that markets with higher marginal revenue and

longer outgoing service time are accepted before those with shorter outgoing service times

and lower marginal revenue. Markets with shorter lead time and higher inventory holding

costs are accepted before those with lower inventory holding cost and longer lead time.

Section 2 reviews relevant literature and highlights our contributions. Section 3 presents
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our assumptions and problem formulation. Section 4 describes the successive piecewise

linearization algorithm and a mixed-integer conic quadratic reformulation of the original

problem. Section 5 presents computational experiments, and Section 6 concludes the paper.

2 Literature review

This paper draws on three related streams of research: inventory-location models, guaran-

teed service models for safety stock placement with load-dependent lead times, and inventory

models with market selection decisions.

Facility Location Models with Inventory Considerations. These models consider

facility location/allocation problems in the face of stochastic demand, explicitly considering

the savings in inventory costs obtained by pooling safety stocks at facilities serving multiple

customers (Farahani et al., 2015; Fathi et al., 2021). Daskin et al. (2002) and Shen et al.

(2003) study a location-inventory problem with risk pooling effect, which is formulated and

solved as a nonlinear integer programming model. These works are extended by Ozsen

et al. (2008) to consider capacitated facilities and by Sourirajan et al. (2007, 2009) to

include congestion effects. Lee and Ozsen (2020) propose an efficient tabu search procedure.

Atamtürk et al. (2012) formulate several location–inventory problems in a supply chain

comprising distribution centers and retailers under a stochastic service approach as conic

quadratic mixed-integer programs that can be solved using commercial solvers.

The above-mentioned studies all adopt the stochastic service approach to safety stock

planning, in which the amount of material delivered to meet an order during the replen-

ishment lead time is a random variable due to the possibility of stockouts. Under the

Guaranteed Service Approach, in contrast, each inventory location specifies a service time

within which all orders will be filled with certainty (Eruguz et al., 2014; Graves and Willems,

2000; Simpson Jr, 1958). You and Grossmann (2010) formulate a joint inventory-location

problem for uncapacitated warehouses and retailers with fixed endogenous replenishment

lead times, and propose a spatial decomposition algorithm based on a Lagrangian heuristic

and piecewise linearization. Puga et al. (2019) consider an inventory location problem in a

two-stage supply chain with two customer classes with different delivery time requirements

and formulate the problem as a conic quadratic mixed integer program. In this paper the lo-
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cations of the facilities are fixed, but service level guarantees apply only to markets selected

to be served, while no revenue is received from declined markets. The inventory location

literature, in contrast, assumes all customers must be served by some facility.

Guaranteed Service (GS) models for safety stock placement. In contrast to

inventory location problems, the safety stock placement problem assumes fixed facility loca-

tions and seeks to determine the cost-minimizing safety stock levels at these facilities that

will ensure the desired customer service level. Stochastic service approaches assume safety

stock will be held at all facilities, while GSA approaches allow each inventory location to

quote an outgoing service time within which all orders will be delivered in full. Simpson Jr

(1958) and Minner (2000) show that in a serial network the optimal solution to the safety

stock placement problem under the GSA will be such that a facility either holds no safety

stock at all, or enough to decouple it from its downstream stage. Inderfurth (1991) and

Inderfurth and Minner (1998) prove this property for distribution and assembly networks,

respectively. This all or nothing property forms the basis for several dynamic programming

algorithms that can solve quite large instances in reasonable solution times (Graves and

Willems, 2000), as well as mathematical programming models (Magnanti et al., 2006).

Most early studies of GSA models for safety stock placement (Graves and Willems,

2000; Simpson Jr, 1958) assumed constant, exogenous replenishment lead times. Recent

work on GSA models has considered capacitated production nodes with endogenous lead

times dependent on production decisions. Kumar and Aouam (2018a,b) use queuing the-

ory to formulate the problem of jointly optimizing lot-sizing decisions and multi-echelon

inventory policies in supply networks. Aouam and Kumar (2019) model production facili-

ties as G/M/1 queues to study the impact of subcontracting and overtime on safety stock

placement. Kumar and Aouam (2019) use the Tactical Planning Model of Graves (1986)

to analyze the impact of production smoothing on safety stock placement decisions, find-

ing significant benefit in coordinating production and inventory decisions. Ghadimi et al.

(2020) and Aouam et al. (2021) study the problem of jointly optimizing capacity allocation

to production stages and safety stock placement in a general acyclic network. They con-

sider general lead time functions that are decreasing and convex in capacity, and develop a

novel Lagrangian decomposition method. Ghadimi and Aouam (2021) optimize processing

capacity and safety stocks under a manufacturer budget and warehouse storage capacity.
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They consider a serial supply chain consisting of a manufacturer with multiple workcenters

supplying multiple products to one warehouse and one retailer, and propose a nested La-

grangian heuristic. The current paper also considers a manufacturer with load-dependent

lead time; however, capacity expansion is not an option. The load-dependent lead time at

the manufacturer is endogenous to the model and driven by the total accepted demand.

Thus even with sufficient capacity to serve all markets, accepting demand up to its nominal

capacity may extend the manufacturer’s lead time to a point that both pipeline and safety

stocks increase to an unacceptable level.

Several papers have used nonlinear clearing functions (Missbauer and Uzsoy, 2020) to

integrate safety stock considerations into production planning models. The clearing func-

tion captures the workload-dependent nature of the production lead times, while chance

constraints seek to ensure service levels are met in the face of stochastic demand. Aouam

and Uzsoy (2015, 2012) compare chance constrained models with stochastic programming

and robust optimization for single-stage production-inventory systems. Albey et al. (2015)

propose a chance-constrained formulation capturing forecast evolution (Heath and Jackson,

1994), which is extended to multistage production systems by Ziarnetzky et al. (2018, 2020).

The focus of this work is the release of work into production systems to meet exogenous

stochastic demand, as opposed to the endogenous demand addressed in this work.

Inventory models with market selection decisions. Geunes et al. (2004) generalize

the classical Economic Order Quantity and Economic Production Quantity models to the

case where a producer can choose which markets to serve to maximize their average net

profit. Geunes et al. (2005) review demand selection and assignment problems and discuss

an optimization model for integrated production and demand planning. Levi et al. (2005)

study inventory/facility location models with market selection using a two stage decision

model. Bakal et al. (2008) study simultaneous market selection, pricing and order quantity

decisions when (i) the firm must offer the same selling price in all markets selected, and (ii)

the firm can offer market-specific prices. Taaffe et al. (2008) formulate the problem of jointly

determining market selection and ordering decisions as a selective newsvendor problem

where demand in each market is normally distributed and dependent on the marketing

effort exerted, and show that it can be solved efficiently by ranking the markets according

to the ratio of net expected revenue to demand variance.
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Shu et al. (2011) extend the model of Geunes et al. (2004) to consider demand uncer-

tainty in a (Q, r) inventory system, where the mean and variance of the demand are known,

and propose a polynomial-time algorithm. Geunes et al. (2011) propose a general frame-

work for integrated supply chain planning and logistics problems with market choice. They

derive conditions under which a polynomial-time constant-factor approximation algorithm

exists for a cost-minimization version of the problem. Van den Heuvel et al. (2012) show

that the integrated market selection and production planning problem is NP-hard, and no

constant-factor polynomial-time approximation algorithm exists unless P=NP. They iden-

tify several special cases that can be solved in polynomial time, and propose a heuristic for

large instances. Shu et al. (2013) study an integrated demand selection and multi-echelon

inventory problem where inventory is held at both a distribution center and at retailers. The

problem is to simultaneously determine the set of demands to fulfill and the multi-echelon

inventory control policy to maximize the net profit.

Demand flexibility can also be introduced in the form of order acceptance, where indi-

vidual customer orders are accepted or rejected rather than all demand from a particular

customer or location. Aouam and Brahimi (2013) formulate the problem of integrated

order acceptance and production planning with load-dependent lead times while allowing

partial order acceptance under uncertain demand. They adopt a robust optimization ap-

proach resulting in a linear program. Brahimi et al. (2015) study the combined effect of

load-dependent lead times, order acceptance and flexible customer due dates under deter-

ministic demand, proposing two relax-and-fix heuristics for the integrated problem. Aouam

et al. (2018) use a robust optimization approach to model demand uncertainty and clear-

ing functions (Missbauer and Uzsoy, 2020) to capture queueing behavior in an integrated

order acceptance and production planning problem. Ghadimi et al. (2022) present central-

ized and decentralized models for coordinating order acceptance and release planning under

load-dependent lead times. Their centralized models use detailed information at the item

level, while the decentralized models decompose the decision process into order acceptance

and order release subproblems that are solved sequentially.
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3 Problem statement

We present our formulation of the integrated safety stock placement and market selection
problem using the following notation:

Sets

I set of warehouses

J set of retailers

Ji set of retailers supplied by warehouse i

N set of all potential markets

Nj set of potential markets available to retailer j

A set of arcs (i, j) representing material flow from warehouse i to retailer j

Q set of feasible lead time - utilization pairs (lq, uq) at the manufacturer

Parameters

λn demand rate of market n (units per period)

πn marginal revenue of market n (e per unit per period)

c unit production cost at the manufacturer (e per unit)

w unit work-in-process holding cost at the manufacturer (e per unit per period)

co unit expediting cost of delayed items at the manufacturer (e per unit per period)

cexp unit expediting cost at the manufacturer (e per unit per period)

wwhs
i unit marginal pipeline inventory cost between the manufacturer and warehouse i (e per unit).

wret
j unit marginal pipeline inventory cost between retailer j and the warehouse supplying it (e per

unit).

r capacity at the manufacturer (units per period)

τwhs
i logistics delay at warehouse i (periods)

τretj logistics delay at retailer j (periods)

zwhs
i safety factor at warehouse i

zretj safety factor at retailer j

hwhs
i inventory holding cost at warehouse i (e per unit per period)

hret
j inventory holding cost at retailer j (e per unit per period)

hexp
j unit expediting cost at retailer j (e per unit per period)

Hwhs(zi) (lead time demand) uncertainty cost at warehouse i (e per unit per period)

Hret(zj) (lead time demand) uncertainty cost at retailer j (e per unit per period)

sn maximum external outgoing service time for the demand at market n (periods)

lq qth possible lead time (integer value) at the manufacturer (periods)

uq manufacturer utilization level corresponding to lead time lq

Decision variables

Si outgoing service time at warehouse i (integer valued, in periods)

An binary variable taking the value of 1 if market n is selected, and 0 otherwise
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Xq binary variable taking value of 1 if lead time - utilization pair (lq, uq) is selected at the manu-

facturer, and 0 otherwise

Pi binary variable taking value of 1 if inventory is coupled, i.e., held only at downstream retailers

of warehouse i; and 0 otherwise. Let P ′i = 1− Pi.

3.1 Model description and assumptions

Supply chain network. We consider a single manufacturer supplying warehouses i ∈ I, each

of which then supplies retailers j ∈ Ji as shown in Figure 1. Each retailer j is supplied

by a specific warehouse i. The set of arcs defining material flow between warehouses and

retailers is denoted by A. Each retailer j has access to potential markets n ∈ Nj with

marginal revenue πn and external outgoing service time sn, denoting the maximum time

it is prepared to wait for an order to be delivered. Demand for each market n arrives

following a stationary Poisson process with rate λn. Inventory can be held at warehouses

and retailers, but not at the manufacturer. Each warehouse and retailer has a fixed lead

time (logistics delay) denoted by τwhsi and τ retj , respectively. The manufacturer is modelled

as a workstation with service rate (capacity) r and staging areas for raw materials and

finished goods. The load-dependent lead time lq at the manufacturer is deterministic and

depends on the utilization level uq, which is determined by the total accepted demand. Set

Q collects all the lead time and utilization level pairs (lq, uq). The (lq, uq) pair adopted at

the manufacturer is determined in our model by the binary decision variable Xq.

Demand process. Demand for market n arrives at the retailer following a Poisson process,

implying exponentially distributed inter-arrival times with mean 1
λn

. The demand Dn(t) of

market n in period t at the retailer follows a Poisson process with average rate λn that is

observed at the beginning of period t (Axsäter, 2015). Demand at each market is assumed

to be independent and identically distributed (i.i.d.) across periods and markets.

The total external demand that must be served by the network is defined by the market

selection decisions represented by the binary decision variables An. The firm commits to

satisfying the entire demand of all accepted markets over the horizon, and receives no

revenue from rejected markets. Once a subset of markets is selected, specifying the values

of the binary decision variables A(n), retailer j’s external demand in period t is given by

the random variable Dj(t) =
∑

n∈Nj
Dn(t)An. The demand at warehouse i in period t is
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Manufacturer

Workstation
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Figure 1: Schematic model of the considered supply chain network

then Di(t) =
∑

j∈Ji
∑

n∈Nj
Dn(t)An, and that at the manufacturer D(t) =

∑
n∈NDn(t)An.

Guaranteed service times. Each warehouse or retailer quotes a guaranteed outgoing service

time to all its downstream nodes within which it can satisfy all orders with certainty. Since

we assume single sourcing, each node’s incoming service time is equal to the outgoing service

time quoted by its upstream supplier. The outgoing service time at retailers cannot exceed

the lead time, i.e. sn ≤ τ retj for all j ∈ J and all n ∈ Nj .

Replenishment process. Inventory at each stage is replenished following a periodic review

base stock policy with a common review period shared by all stages. A base stock level

is set at each warehouse and retailer to cover demand over the net replenishment lead

time T with a target service level αwhsi at warehouse i and αretj at retailer j. Demand

over the net replenishment time T is normally distributed with mean λnT and standard

deviation
√
λnT . Following standard GSA calculations (Graves and Willems, 2000), the net

replenishment time of retailer j for serving market n is Tjn = Si+τ retj −sn, implying a base

stock level of Bretj =
∑

n∈Nj
λnTjnAn + zretj

√∑
n∈Nj

λnTjnAn at this retailer, where zretj is

the safety factor corresponding to the service level αretj . Similarly, the net replenishment

time at warehouse i is Ti =
∑

q∈Q lqXq + τwhsi − Si, yielding a base stock level Bwhsi =(∑
j∈Ji

∑
n∈Nj

λnAn

)
Ti + zwhsi

√(∑
j∈Ji

∑
n∈Nj

λnAn

)
Ti. Following Klosterhalfen et al.

(2013) and Aouam and Kumar (2019), any demand exceeding the base stock levels is met
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by expediting items from the pipeline inventory. We assess a common unit cost for each

expedited item, irrespective of the duration, and assume that the pipeline inventory always

exceeds the amount to be expedited.

Manufacturer lead time. The manufacturer specifies a guaranteed, deterministic lead time

lq based on its planned utilization level uq =
∑

n∈N λnAn

r . The time lq between an order

being received by the manufacturer and its shipment to a warehouse can be represented as

the sum of two components such that lq = t1 + t2. t1 represents the average time an item

spends in the raw material staging area waiting to be processed, and t2 the deterministic

time it will spend in process and waiting in the finished goods staging area. The value of

t2 is determined such that a target fraction α of processed items is completed and ready to

be shipped within this fixed time. Units that are not available in the finished good staging

area, and thus prevent shipment of a complete order to the warehouses, are expedited from

the workstation queue, ensuring that the entire order placed by a warehouse is satisfied

within the manufacturer’s guaranteed service time, given by its lead time lq. The average

fraction of time the manufacturer must resort to expediting is (1 − α), and the expected

number of delayed items per period is (1 − α)
∑

n∈N λnAn. The manufacturer receives

orders in its raw material staging area at the start of a period. Because demand at each

market follows a Poisson process, the total demand also follows a Poisson process with

average rate
∑

n∈N λnAn. Hence the manufacturer releases items to the workstation queue

with exponentially distributed interarrival times with mean 1∑
n∈N λnAn

, after which they are

processed in First-Come First-Served (FCFS) order. The service time at the workstation

can follow any distribution with mean 1
r , so we model the manufacturer as a M/G/1 queue.

Uncertainty costs Hwhs(zi) and Hret(zj). The uncertainty costs associated with lead time

demand at warehouses and retailers, consisting of the unit inventory holding cost and expe-

diting costs, are given by Hwhs(zi) = hwhsi zwhsi +
(
cexp + hwhsi − w

)
G(zwhsi ) and Hret(zj) =

hretj zretj +
(
hexpj + hretj −

wret
j

τretj

)
G(zretj ), respectively. The derivation of these costs is given

in Appendix A of the Electronic Supplement.

3.2 Problem Formulation

The integrated safety stock placement and market selection problem SSPM determines the
set of markets to be served by each retailer j, the utilization uq and lead time lq at the
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manufacturer and the service times Si at the warehouses to maximize expected profit. The
formulation is as follows:

SSPM max
∑
n∈N

(πn − c)λnAn − w
∑
q∈Q

lqXq

(∑
n∈N

λnAn

)
− co(1− α)

(∑
n∈N

λnAn

)

−
∑
i∈I

wwhs
i

∑
j∈Ji

∑
n∈Nj

λnAn −
∑
j∈J

wret
j

∑
n∈Nj

λnAn −
∑
i∈I

Hwhs(zi)

√√√√√∑
j∈Ji

∑
n∈Nj

λnAn

∑
q∈Q

lqXq + τwhs
i − Si


−
∑
i∈I

∑
j∈Ji

Hret(zj)

√∑
n∈Nj

λnAn(Si + τretj − sn) (1)

subject to:∑
n∈N

λnAn ≤ r
∑
q∈Q

uqXq (2)

∑
q∈Q

Xq ≤ 1 (3)

∑
q∈Q

lqXq + τwhs
i − Si ≥ 0 ∀i ∈ I (4)

Si ∈ Z+ ∀i ∈ I (5)

An, Xq ∈ {0, 1} ∀n ∈ N, ∀q ∈ Q (6)

The objective function (1) maximizes the total profit, where the first term is the total

revenue obtained from serving the accepted markets minus total production costs, the

second the total expected WIP holding cost at the manufacturer, and the third the cost

incurred at the manufacturer to guarantee lead time lq by expediting delayed units. The

fourth and fifth terms represent the total pipeline inventory cost between the manufacturer

and warehouses and the warehouses and retailers, respectively, while the sixth and seventh

capture the inventory costs at the warehouses and retailers. Constraints (2) define the

utilization level at the manufacturer, while (3) ensure that only one lead time - utilization

level pair is selected at the manufacturer. Constraints (4) restrict the net replenishment

lead time at the warehouses to nonnegative values, while (5) and (6) define all service times

as integer variables and market selection variables Xq as binary.

4 Reformulations and solution methods

Problem SSPM is a mixed-integer nonlinear program (MINLP) with a nonconvex objective

function and nonlinear constraints. The nonlinearity of SSPM arises from several bilinear

terms and the square root terms that compute the safety stock costs. We first present an
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alternative formulation A-SSPM eliminating the integer variables related to service times

Si at the warehouses and linearizing all bilinear terms. We then explore two different ways of

dealing with the square root terms remaining in A-SSPM: 1) a conic quadratic formulation

CQ that can be solved using standard solvers while adding valid inequalities to improve

computational efficiency, and 2) a successive piecewise linearization algorithm SPLA that

iteratively improves lower and upper bounds.

4.1 An alternative formulation of SSPM

Simpson Jr (1958) and Minner (2000) show that in a serial network the optimal solution

to the safety stock placement problem under the GSA has the all-or-nothing property such

that a stage either holds no safety stock or enough to decouple it from its downstream stage.

Inderfurth (1991) and Inderfurth and Minner (1998) prove this property for distribution and

assembly networks, respectively. This property implies two different policies for safety stock

placement at a retailer j served by warehouse i: inventory coupling, holding inventory only

at the retailer, and inventory decoupling when it is held at both warehouse and retailer.
Under the coupling policy, indicated by Pi = 1, safety stock is held only at retailers

served by warehouse i and none at warehouse i. In this case Si =
∑

q∈Q lqXq + τwhsi ,
and the net replenishment lead time at warehouse i is zero. The net replenishment lead
time at retailer j served by warehouse i will be NLTijn =

∑
q∈Q lqXq + τwhsi + τ retj − sn.

Under the second policy, denoted by P ′i = 1, inventory is held at warehouse i and all
retailers it serves. In this case Si = 0, and the net replenishment lead time at warehouse i is
NLTi =

∑
q∈Q lqXq+τ

whs
i . Retailer j served by warehouse i will have net replenishment lead

time NLTijn = τ retj − sn. The decision variables Pi and P ′i allow the service time variables
Si to be eliminated. The bilinear terms arising from the product of binary variables can be
linearized as presented in Appendix B in the Electronic Supplement, yielding the following
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formulation:

A-SSPM max
∑
n∈N

πnλnAn − w
∑
q∈Q

∑
n∈N

λnlqXAqn − co(1− α)

(∑
n∈N

λnAn

)
−
∑
i∈I

wwhs
i

∑
j∈Ji

∑
n∈Nj

λnAn

−
∑
j∈J

wret
j

∑
n∈Nj

λnAn −
∑
i∈I

∑
j∈Ji

Hret(zj)

√∑
n∈Nj

λn(τwhs
i + τretj − sn)PAin +

∑
n∈Nj

∑
q∈Q

λnlqPAXinq

−
∑
i∈I

Hwhs(zi)

√∑
j∈Ji

∑
n∈Nj

λnτwhs
i PA′in +

∑
j∈Ji

∑
n∈Nj

∑
q∈Q

λnlqPAX ′inq

−
∑
i∈I

∑
j∈Ji

Hret(zj)

√∑
n∈Nj

λn(τretj − sn)PA′in (7)

subject to: constraints (2), (3), (6), (B.11)-(B.21), and (B.23)-(B.29)

Pi + P ′i = 1 ∀i ∈ I (8)

Pi, P
′
i ∈ {0, 1} ∀i ∈ I (9)

Constraints (8) ensure that only one of the two inventory policies (coupling or decoupling)

is selected for each retailer j supplied by warehouse i, while (9) define binary variables.

However, A-SSPM remains difficult to solve due to the square root terms in the objective

function. We now propose two alternative approaches to solving A-SSPM.

4.2 A mixed-integer conic quadratic reformulation

Noting that for any binary variable X we have X = X2 , we can reformulate A-SSPM
as the following mixed-integer conic quadratic program (MICQP) by introducing three new
auxiliary variables Yij , Y ′i and Y ′′ij .

CQ max
∑
n∈N

πnλnAn − w
∑
q∈Q

∑
n∈N

λnlqXAqn − co(1− α)

(∑
n∈N

λnAn

)
−
∑
i∈I

wwhs
i

∑
j∈Ji

∑
n∈Nj

λnAn

−
∑
j∈J

wret
j

∑
n∈Nj

λnAn −
∑
i∈I

∑
j∈Ji

Hret(zj)Yij −
∑
i∈I

Hwhs(zi)Y
′
i −

∑
i∈I

∑
j∈Ji

Hret(zj)Y
′′
ij (10)

subject to: constraints (2), (3), (6), (8), (9), (B.11)-(B.21), and (B.23)-(B.29).

Y 2
ij ≥

∑
n∈Nj

λn(τwhs
i + τretj − sn)PAin

2 +
∑
n∈Nj

∑
q∈Q

λnlqPAXinq
2 ∀(i, j) ∈ A (11)

Y ′i
2 ≥

∑
j∈Ji

∑
n∈Nj

λnτ
whs
i PA′in

2
+
∑
j∈Ji

∑
n∈Nj

∑
q∈Q

λnlqPAX
′
inq

2 ∀i ∈ I (12)

Y ′′ij
2 ≥

∑
n∈Nj

λn(τretj − sn)PA′in
2 ∀(i, j) ∈ A (13)

Yij , Y
′
i , Y

′′
ij ∈ R+ ∀i ∈ I, ∀(i, j) ∈ A (14)

Model CQ has a linear objective function and conic quadratic constraints, and can be solved

directly by standard solvers such as CPLEX (Atamtürk et al., 2012; Shahabi et al., 2013,
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2014). However, the size of the formulation increases rapidly in network size, especially the

number of constraints and variables for the linearization, and the computation of constraints

(11)-(13) becomes time-consuming.
To improve the solution time of CQ, we introduce a set of valid inequalities. Recall that

XAqn = AnXq. Since
∑

q∈QXq ≤ 1, we can write the valid inequalities∑
q∈Q

XAqn ≤ 1 ∀n ∈ N (15)

Similarly for binary variables PAXinq = PiAnXq and PAX ′inq = P ′iAnXq, we get∑
q∈Q

PAXinq ≤ 1 ∀(i, j) ∈ A, ∀n ∈ Nj (16)

∑
q∈Q

PAX ′inq ≤ 1 ∀(i, j) ∈ A, ∀n ∈ Nj (17)

PAin, PA′in, PAXinq, and PAX ′inq are products of binary variables PiAn, P ′iAn, PiAnXq,
and P ′iAnXq, respectively. Since Pi+P ′i = 1 and

∑
q∈QXq ≤ 1, we have the valid inequalities∑

q∈Q

PAXinq + PAX ′inq ≤ 1 ∀(i, j) ∈ A, ∀n ∈ Nj (18)

PAin + PA′in ≤ 1 ∀(i, j) ∈ A, ∀n ∈ Nj (19)

PAXinq + PAX ′inq ≤ 1 ∀(i, j) ∈ A, ∀n ∈ Nj , ∀q ∈ Q (20)

Our computational experiments show that the addition of these valid inequalities signifi-

cantly improves the optimality gap and solution time.

4.3 The successive piecewise linearization algorithm (SPLA)

SPLA iteratively refines lower and upper bounds on the objective function by successively
refining piecewise linear approximations that yield integer linear programs. We use the
“multiple-choice” formulation of Magnanti et al. (2006) to approximate the square root term√

Θij , using a piecewise linear function defined over a set of intervals Kij = {1, 2, 3, ..., k}
and the lower and upper bounds on Θij in each interval given by νij0, νij1, νij2, ..., νij,k−1,
νijk. Applying the multiple-choice approach to A-SSPM, with Θij =

∑
n∈Nj

λn(τwhsi +

τ retj − sn)PAin +
∑

n∈Nj

∑
q∈Q λnlqPAXinq, Θ′i =

∑
j∈Ji

∑
n∈Nj

λnτ
whs
i PA′in

+
∑

j∈Ji
∑

n∈Nj

∑
q∈Q λnlqPAX

′
inq, and Θ′′ij =

∑
n∈Nj

λn(τ retj − sn)PA′in gives the following

14



piecewise linear approximation problem:

PLA-SSPM max
∑
n∈N

πnλnAn − w
∑
q∈Q

∑
n∈N

λnlqXAqn − co(1− α)

(∑
n∈N

λnAn

)

−
∑
i∈I

wwhs
i

∑
j∈Ji

∑
n∈Nj

λnAn −
∑
j∈J

wret
j

∑
n∈Nj

λnAn −
∑
i∈I

∑
j∈Ji

Hret(zj)
∑
k∈K

(
fijkΨijk + aijkOijk

)
−
∑
i∈I

Hwhs(zi)
∑
k∈K

(
f ′ikΨ′ik + a′ikO

′
ik

)
−
∑
i∈I

∑
j∈Ji

Hret(zj)
∑
k∈K

(
f ′′ijkΨ′′ijk + a′′ijkO

′′
ijk

)
(21)

subject to: constraints (2), (3), (6), (8), (9), (B.11)-(B.21), and (B.23)-(B.29).∑
k∈K

Oijk ≥
∑
n∈Nj

λn(τwhs
i + τretj − sn)PAin +

∑
n∈Nj

∑
q∈Q

λnlqPAXinq ∀i ∈ I, ∀j ∈ J (22)

∑
k∈K

Ψijk = 1 ∀i ∈ I, ∀j ∈ J (23)

νijk−1Ψijk ≤ Oijk ≤ νijkΨijk ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (24)∑
k∈K

O′ik ≥
∑
j∈Ji

∑
n∈Nj

λnτ
whs
i PA′in +

∑
j∈Ji

∑
n∈Nj

∑
q∈Q

λnlqPAX
′
inq ∀i ∈ I (25)

∑
k∈K

Ψ′ik = 1 ∀i ∈ I (26)

ν′ik−1Ψ′ik ≤ O′ik ≤ ν′ikΨ′ik ∀i ∈ I, ∀k ∈ K (27)∑
k∈K

O′′ijk ≥
∑
n∈Nj

λn(τretj − sn)PA′in ∀i ∈ I, ∀j ∈ J (28)

∑
k∈K

Ψ′′ijk = 1 ∀i ∈ I, ∀j ∈ J (29)

ν′′ijk−1Ψ′′ijk ≤ O′′ijk ≤ ν′′ijkΨ′′ijk ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (30)

Oijk, O
′
ik, O

′′
ijk ∈ R+, Ψijk,Ψ

′
ik,Ψ

′′
ijk ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (31)

where aijk =
√
νijk−

√
νijk−1

νijk−νijk−1
and fijk =

√
νijk − aijkνijk are the slope and intercept, re-

spectively, of the approximating line segments. Similarly, we have a′ik =

√
ν′ik−
√
ν′ik−1

ν′ik−ν
′
ik−1

,

f ′ik =
√
ν ′ik − a

′
ikν
′
ik, a

′′
ijk =

√
ν′′ijk−
√
ν′′ijk−1

ν′′ijk−ν
′′
ijk−1

and f ′′ijk =
√
ν ′′ijk − a

′′
ijkν

′′
ijk. Variables Oijk, O

′
ik,

and O′′ijk define the level of variables Θij , Θ′i, and Θ′′ij , respectively, in each interval k.

To manage the model size, SPLA adds linear segments iteratively to improve the ap-

proximation. In the first step, a one-piece linear approximation is considered, i.e. all square

root terms are replaced with their secants. In this case, the optimal objective value of

PLA-SSPM provides an upper bound on the optimal value of A-SSPM and the optimal

solution of PLA-SSPM is feasible for A-SSPM, providing a lower bound. In each subse-

quent iteration, new intervals are introduced, based on the optimal values of variables Θij ,

Θ′i, and Θ′′ij obtained in the previous iteration, and the resulting instance of PLA-SSPM is

solved. Each iteration provides lower and upper bounds on the optimal value of A-SSPM.
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Iterations continue until the best lower and upper bounds are within a specified tolerance

tol. Appendix C of the Electronic Supplement summarizes the SPLA procedure.

5 Computational experiments

Our computational study consists of three experiments. We first examine a simple serial

system with a single market, where the principal decision is what fraction of the avail-

able demand to serve. The parameters for this system are presented in Appendix D of

the Electronic Supplement. Our second experiment, reported in Appendix E of the Elec-

tronic Supplement for brevity, examines a distribution system. Our final computational

experiments examine the computational performance of the solution procedures.

5.1 Analysis of a serial system with one market

We first consider a serial supply chain network with one manufacturer, one warehouse and

one retailer as depicted in Figure 2 to obtain insight into the structure of an optimal solution.

The retailer has access to only one market, so the firm’s decision is what fraction of this

market’s demand should be accepted to maximize profit, allowing all decision variables to

take fractional values. The manufacturer is modelled as an M/M/1 queue.

Warehouse RetailerManufacturer Market

Workstation
FGRW

Figure 2: Schematic model of the serial system
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The problem, denoted by P, can be formulated as follows:

P max A

(
(π − c)λ− wLT (U)λ− co(1− α)λ− wwhsλ− wretλ−Hwhs(z)

√
λ(LT (U) + τwhs − S)

−Hret(z)
√
λ(S + τret)

)
(32)

subject to:

λA ≤ rU (33)

LT (U) + τwhs − S ≥ 0 (34)

0 ≤ A, U ≤ 1 (35)

U, LT (U), S, A ∈ R+ (36)

Effect of capacity on profit, market selection and inventory placement. Figure

3 shows the effect of the capacity r on the system profit for low (π = 2c = 20) and high

(π = 5c = 50) levels of marginal revenue. As r increases from 1 to 35 units per period,

profit increases from 0.00106 to 53.21 e when π = 20, and from 13.678 to 803.21 e when

π = 50. As r increases, more demand is accepted, increasing revenue and profit which, as

expected, is increasing in the marginal revenue π.
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Figure 3: Effect of capacity level r on the

profit for π = 20 and π = 50.
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Figure 4: Effect of capacity level r on market

selection decision A for π = 20 and π = 50.

Figure 4 shows the effect of r on the fraction A of demand served (i.e.,market selection

decisions) for π = 20 and π = 50. As r increases from 1 to 35 units per period, the fraction

of demand served increases from 0.0001 and 0.0261 to 1, for π = 20 and π = 50, respectively.

A higher value of r reduces the manufacturer’s lead time, allowing the firm to accept more

demand and generate more revenue. There is a capacity level (r = 33, when π = 20; r = 27

when π = 50) above which the entire demand is accepted, i.e., A = 1. This threshold is
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decreasing in the marginal revenue π; all available demand can be accepted for lower values

of r when π is high enough.
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Figure 5: Effect of capacity r on the manufacturer’s lead time and inventory placement for

π = 20 and π = 50.

Figure 5 shows the manufacturer’s lead time as a function of capacity r. As r increases

from 1 to 35, lead time decreases from 4.2 to 0.87 periods when π = 20, and from 11.09

to 0.87 periods, when π = 50. Lead time is decreasing in the capacity r and increasing

in the accepted demand λA. As r increases more demand is accepted, but only as long as

lead time decreases. Figure 5 also shows that when r < 33, the lead time is always higher

for π = 50 than for π = 20, because under the former the high revenue offsets the extra

inventory costs due to the higher lead time. When r > 33, the lead time is equal for both

π = 20 and π = 50 since the entire demand is accepted.

Figure 5 shows that there is a lead time threshold above which inventory is decoupled,

i.e., held at both the warehouse and the retailer. When lead time is below this threshold no

inventory is held at the warehouse, and inventory is only held at the retailer. This threshold

is at r = 20 and LT = 2.83 when π = 50. When π = 25, this threshold happens when r < 1.

Therefore, when marginal revenue is low, inventory coupling is optimal for lower capacity.

Effect of considering nonlinear relationship between capacity and lead time. We

now examine the benefit of considering load-dependent lead times in the SSPM problem.

For comparison purposes we consider a Two-Step approach that sequentially optimizes the

market selection and safety stock decisions assuming a fixed exogenous lead time at the

manufacturer. In this approach, we first replace LT (U) in problem P with a fixed lead
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time LT based on a target utilization level U to obtain the optimal market selection A∗

for this utilization level. We then input the resulting market selection A∗ into the problem

P to obtain the optimal utilization, lead time and service time decisions. Comparing the

objective function value of the Two-Step approach objTwo−Step and that of problem P, objP

yields the value of considering the nonlinear relationship between capacity and lead time,

computed as V OCN =
objP − objTwo−Step

objTwo−Step
× 100.
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Figure 6: Value of considering the nonlinear

relationship between capacity and lead time

when r = 25 and π = 20.
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Figure 7: Value of considering the nonlinear

relationship between capacity and lead time

when r = 25 and π = 50.

In Figure 6, when π = 20, the optimal profit from problem P is 35.06. The profit of

the Two-Step approach, which never exceeds that of problem P, depends on the target

utilization level U chosen in the first step. It increases from 27.69 for U = 50% to 35.06

for the U = 74%, the optimal utilization level in problem P, then decreases to 18.81 for

U = 90%. VOCN decreases from 26.6% for target utilization of 50% to 0% for target

utilization of 74%, increasing to 86.38% for target utilization of 90%.When U > 90%, the

Two-Step approach yields negative profit so we do not calculate VOCN. Figure 7 shows

similar results for π = 50, with VOCN decreasing from 73.83% for U = 50% to 0% for U

= 92.8%, then increasing to 70.41% for U = 99%.

Figure 6 shows the danger of loading the manufacturer beyond the optimal utilization

level suggested by our approach. The VOCN values reported here may well underestimate

those that would be observed in practice, since the fixed lead time and the corresponding

utilization are computed using the queueing model. In practice the lead time incurred

at high utilization is often underestimated. Even this conservative approach, however,

suggests that considering load-dependent lead times can be beneficial, preventing the adverse
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consequences of extremely high utilization levels under unfavorable cost structures as in

Figure 6. When π = 50, as in Figure 7, the unit revenue is high enough to offset the

additional costs incurred due to the very high lead times at the manufacturer.

Value of integrating market selection and safety stock decisions. We now study

the value of integrating market selection and safety stock decisions. We compare the profit

obtained from solving the integrated problem P with a sequential approach in which we

first make the market selection decision by optimizing the profit of accepting demand, i.e.,

A

(
(π − c)λ − wLT (U)λ − co(1 − α)λ − wwhsλ − wretλ

)
, subject to capacity constraints,

i.e., λA ≤ rU and U < 1. We then input the market selection decisions as parameters into

Problem P and obtain the optimal profit objSequential for these market selection decisions. In

this way, the sequential approach does not take into account safety stock decisions and costs

when selecting the markets to serve. The value of integrating market selection and safety

stock decisions is given by V OI = 100× ProfitP−Max(ProfitSequential,0)
ProfitP

. Because safety stock

costs are only considered after market selection decisions, the sequential procedure may yield

negative profit. Thus we only consider positive values of objSequential when calculating VOI.

Figures 8 and 9 plot the profits (left y-axis), of problem P and the sequential approach, and

VOI (right y-axis) as a function of capacity for π = 20 and π = 50, respectively.

When π = 20, as capacity increases from 1 to 35, the profits of P and the sequential

approach increase from 0.0018 and 0 to 53.21, respectively. The profit of P is always greater

than that of the sequential approach, giving VOI≥ 0. When r ≤ 3, the marginal profit of

the sequential approach is negative, i.e., the cost of accepting demand exceeds its revenue.

Hence, under the sequential approach it is optimal not to serve any market and the profit

is zero, mainly due to the safety stock costs. In contrast, the integrated approach is able to

serve a (small) fraction of the market and sets safety stocks to yield a positive profit. The

VOI in this case 100%. As capacity increases, VOI decreases to 35.16% for r = 5, 12.78%

for r = 10, 5.18% for r = 25, and to 0% when r ≥ 35. Figure 9 exhibits qualitatively similar

results when π = 50, but the VOI is very small. In fact, when π = 50 then VOI = 0.096%

for r = 5, VOI = 0.068% for r = 10 and VOI = 0.03% for r = 25. Comparing Figures 8

and 9, we observe that when π is very high the VOI is very small relative to the case when

marginal revenue is low. This is to be expected when the marginal revenue is sufficiently

high to offset both pipeline and safety stock costs.
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of capacity for π = 20.
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5.2 Comparison of solution methods

We now compare the computational performance of the SPLA algorithm presented in

Section 4.3 and the mixed-integer conic quadratic formulation CQ of Section 4.2. Both

methods are coded in GAMS 31.2.0 and solved using the CPLEX solver with standard

settings. Model SSPM is coded in GAMS and solved using BARON, a well-established

non-convex MINLP solver (Tawarmalani and Sahinidis, 2005; Sahinidis, 2017), with default

settings. All methods are terminated when the CPU time exceeds 3600 seconds. In each

iteration of SPLA, we set a time limit of 1500 seconds to solve the linear approximation

problem PLA-SSPM. At the end of each iteration, we calculate the total time used, and

terminate the algorithm if this exceeds 3600 seconds. All experiments were run on a 64-bit

computer with a 2.7 GHz Intel Core i5 processor and 8 GB of RAM under OSX 10.15.6.

We conduct our experiments on three sets A, B, and C of small, medium and large

instances, respectively. Each set consists of 10 randomly generated instances. The number

of warehouses |I|, number of retailers |J| and number of markets |N| for each instance are

given in Table 4 in Appendix F of the Electronic Supplement.

The mean demand λn for each market n is uniformly distributed between 10 and

100 units per period. The manufacturer’s capacity level is then randomly generated as

r = unif(0.5, 1) ×
∑

n∈N λn. The production cost c at the manufacturer is generated ran-

domly between 1e and 10e per unit per period. The work-in-process holding cost at the

manufacturer is set as w = c × unif(0.1, 0.3). The lead time at the warehouses τwhsi and

retailers τ retj are generated randomly between 1 and 10 periods. The maximum external
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outgoing service times for markets sn follow a discrete uniform distribution between 1 and

τ retj for all n ∈ Nj . The pipeline inventory costs between the manufacturer and ware-

houses are generated based on wwhsi = wτwhsi × unif(1.05, 1.10). The inventory holding

cost at warehouses are generated as hwhsi =
wwhs

i

τwhs
i

× unif(1.05, 1.10), and the pipeline in-

ventory cost between warehouses and retailers as wretj = hwhsi τ retj × unif(1.1, 1.2). The

inventory holding cost at retailers are generated randomly as hretj =
wret

j

τretj
× unif(1.1, 1.2).

The safety factor for all warehouses and retailers is set as zwhsi = zretj = 1.96, correspond-

ing to a 97.5% service level. Based on Aouam and Kumar (2019), the unit expediting

cost at warehouses is set as hexp, whsi =
hwhs
i

1−Φ(zwhs
i )

− (hwhsi − w) and at the retailers as

hexp, retj =
hretj

1−Φ(zretj )
. The overtime cost at the manufacturer is set as co =

∑
i∈I h

exp, whs
i

|I| .

Following Ghadimi and Aouam (2021), the uncertainty cost at the warehouse is set as

Hwhs(zi) = hwhsi zwhsi + (hexp, whsi + hwhsi − w)G(zwhsi ) and at the retailer as Hret(zj) =

hreti jzretj +hexp, retj G(zretj ), where G(z) = φ(z)−z(1−Φ(z)). φ(·) and Φ(·) are the standard

normal probability density function and cumulative distribution function, respectively.

The time an item spends in the workstation (queuing plus processing) is the production

cycle time of the manufacturer, PCT which is a random variable. For theM/G/1 queue, the

mean and variance of the PCT are given by the Pollaczek-Khintchine formulas (Allen, 2014)

as E(PCT ) = 1
r

[(
1+C2

s
2

)(
uq

1−uq

)
+ 1
]
and Var(PCT ) = λ

3(1−uq)Γ + 1
2

(
1+C2

s
r

)2 ( uq
1−uq

)2
+

1+C2
s

r2(1−uq)
− E(PCT )2. Where Cs is the coefficient of variation of the processing times and

Γ the third moment about zero of the processing time distribution. The fixed portion t2

of the manufacturer’s lead time is defined such that P(PCT ≤ t2) ≥ α. The probability

distribution of PCT can be approximated by a hyper-exponential or gamma distribution.

When α =95%, Martin (1972) estimates the production lead times as t2(uq) = E(PCT ) +

2
√

Var(PCT ), which we use to set the value of t2. We assume that processing time at the

manufacturer follows a lognormal distribution with mean 1
r , and the coefficient of variation

Cs of the service time is generated uniformly between 0.5 and 1.5. On average, orders spend

0.5 periods in the raw material staging area, i.e., t1 = 0.5. We then discretize these to

obtain integer values lq = t1 + t2 and their corresponding utilization levels uq.

The marginal revenue of accepting demand from market n is generated as πn =
(
c +

wlq + co(1− α) + wwhs + wret +H
whs

(z)
√
lq + τwhs +H

ret
(z)
√
τ ret − s

)
× unif(1.1, 1.5),

where lq is the lead time values related to a utilization level of 80%, and wwhs =
∑

i∈I w
whs
i

|I| ,
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H
whs

(z) =
∑

i∈IH
whs(zi)

|I| , τwhs =
∑

i∈I τ
whs
i

|I| , wret =
∑

j∈J w
ret
j

|J| , Hret
(z) =

∑
j∈JH

ret(zj)

|J| , τ ret =∑
j∈J τ

ret
j

|J| , and s =
∑

n∈N sn
|N| .

We compare the solution procedures using three performance measures: 1) Optimality

gap (Gap%) which is the relative difference between the best upper bound (GUB) and the

best lower bound (GLB), i.e. Gap% = GUB−GLB
GLB ×100. 2) Relative deviation DevI% which

shows the relative deviation between the best lower bound of SPLA and the best lower

bound obtained by BARON, i.e. DevI%= GLBSPLA−GLBBARON
GLBBARON

×100. 3) Relative deviation

DevII% which is the relative deviation between the best lower bound of CQ and the best

lower bound obtained by BARON, i.e. DevII% =
GLBCQ−GLBBARON

GLBBARON
×100. Positive values

of DevI% and DevII% indicate that SPLA and CQ yield higher profit than BARON.

Tables 2-4 report the lower and upper bounds, optimality gap Gap%, CPU time, DevI%

and DevII% for all instances in sets A, B, and C. In Table 2, BARON, SPLA, and CQ

find optimal solutions for all the small instances in set A in an average CPU time of 87, 96,

and 130 seconds, respectively. As all methods find an optimal solution DevI=DevII =0%.

Table 2: Performance of BARON, SPLA and CQ for Instance Set A

In
s.

# BARON SPLA CQ

LB UB Gap% Time (s) LB UB Gap% Time (s) DevI% LB UB Gap% Time (s) DevII%

1 19866 19866 0.00 224 19866 19866 0.00 152 0.00 19866 19866 0.00 149 0.00

2 8681 8681 0.00 177 8681 8681 0.00 70 0.00 8681 8681 0.00 105 0.00

3 43649 43649 0.00 9 43649 43650 0.00 74 0.00 43649 43649 0.00 102 0.00

4 10313 10313 0.00 66 10313 10313 0.00 66 0.00 10313 10313 0.00 190 0.00

5 7279 7279 0.00 81 7279 7279 0.00 37 0.00 7279 7279 0.00 126 0.00

6 33830 33830 0.00 62 33830 33830 0.00 31 0.00 33830 33830 0.00 58 0.00

7 99537 99537 0.00 57 99537 99538 0.00 97 0.00 99537 99537 0.00 136 0.00

8 37505 37505 0.00 36 37505 37505 0.00 86 0.00 37505 37505 0.00 87 0.00

9 74066 74066 0.00 117 74066 74067 0.00 255 0.00 74066 74066 0.00 270 0.00

10 6892 6892 0.00 37 6892 6892 0.00 90 0.00 6892 6892 0.00 73 0.00

Average 0.00 87 0.00 96 0.00 0.00 130 0.00

Table 3 shows that BARON obtains feasible solutions for all medium-sized instances

in set B within the one hour time limit with an average gap of 38.95%. SPLA finds the

optimal solution for all instances in this set in an average of 1129 seconds, while CQ obtains

optimal solutions for all instances except instance 1 (whose optimality gap is 0.07%) in an

average CPU time of 2063 seconds. The average relative deviation for SPLA and CQ are

DevI=0.29% and DevII=0.29%, meaning that both SPLA and CQ obtain higher profit

than BARON. The small gaps suggest that BARON is actually close to an optimal solution,
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but unable to confirm it in the available time.

Table 3: Performance of BARON, SPLA and CQ for Instance Set B
In

s.
# BARON SPLA CQ

LB UB Gap% Time (s) LB UB Gap% Time (s) DevI% LB UB Gap% Time (s) DevII%

1 132444 182374 37.70 3600 132974 132977 0.00 1388 0.40 132974 133067 0.07 3600 0.40

2 60791 84430 38.89 3600 61109 61110 0.00 1306 0.52 61109 61109 0.00 1929 0.52

3 43518 59476 36.67 3600 43543 43543 0.00 1664 0.06 43543 43543 0.00 2482 0.06

4 152086 229769 51.08 3600 152224 152226 0.00 1299 0.09 152224 152224 0.00 1635 0.09

5 18653 23971 28.51 3600 18752 18752 0.00 1192 0.53 18752 18752 0.00 1340 0.53

6 53737 76213 41.83 3600 53916 53917 0.00 757 0.33 53916 53916 0.00 3100 0.33

7 53428 69807 30.66 3600 53625 53626 0.00 1196 0.37 53625 53625 0.00 1295 0.37

8 171308 237163 38.44 3600 171340 171342 0.00 888 0.02 171340 171341 0.00 1857 0.02

9 93885 132354 40.97 3600 94309 94310 0.00 1032 0.45 94309 94309 0.00 2240 0.45

10 46190 66842 44.71 3600 46258 46258 0.00 567 0.15 46258 46258 0.00 1153 0.15

Average 38.95 3600 0.00 1129 0.29 0.01 2063 0.29

Table 4 shows that BARON obtains feasible solutions for all the large instances in set

C within the one hour time limit with an average Gap of 50.33%. SPLA finds optimal or

near optimal solutions for all instances in set C with an average Gap of 0.01% within an

average CPU time of 3522 seconds. CQ is able to provide feasible solutions for all instances

in set C with an average Gap of 11.32% within the one hour time limit. SPLA obtains

solutions with higher profit than BARON and CQ with DevI=0.48%. CQ is able to provide

better solutions than BARON only for instances 1 and 2 with DevI of 0.04% and 0.24%,

respectively. The average relative gap for CQ is DevI=-1.14%, implying that on average

CQ cannot provide better solutions than BARON. As the size of the instances increases

the performance of CQ deteriorates.

Table 4: Performance of BARON, SPLA and CQ for set C

In
s.

# BARON SPLA CQ

LB UB Gap% Time (s) LB UB Gap% Time (s) DevI% LB UB Gap% Time (s) DevII%

1 316886 454494 43.42 3600 318657 318679 0.01 2886 0.56 317017 324229 2.28 3600 0.04

2 253898 371804 46.44 3600 255050 255052 0.00 3456 0.45 254497 258668 1.64 3600 0.24

3 527948 722859 36.92 3600 529518 529526 0.00 3465 0.30 526323 541040 2.80 3600 -0.31

4 84449 125056 48.08 3600 84776 84776 0.00 3235 0.39 83686 88512 5.77 3600 -0.90

5 387902 559365 44.20 3600 388554 388575 0.01 2015 0.17 384075 412247 7.33 3600 -0.99

6 203813 318153 56.10 3600 205047 205171 0.06 4809 0.61 198191 220863 11.44 3600 -2.76

7 99639 162862 63.45 3600 100120 100127 0.01 3477 0.48 97328 111209 14.26 3600 -2.32

8 117121 178946 52.79 3600 117460 117468 0.01 3549 0.29 115592 123081 6.48 3600 -1.31

9 97948 152823 56.02 3600 98738 98748 0.01 4436 0.81 97816 145608 48.86 3600 -0.13

10 117286 182862 55.91 3600 118174 118175 0.00 3887 0.76 113838 127937 12.39 3600 -2.94

Average 50.33 3600 0.01 3522 0.48 11.32 3600 -1.14

Overall, CQ provides better upper bounds, BARON better feasible solutions, and SPLA

24



better feasible solutions and better upper bounds. The performance of BARON and CQ

deteriorates as the instance size increases, while that of SPLA remains consistent.

Finally Table 5 shows the optimality gap Gap% and CPU time for all instances in

sets A, B, and C for the QC problem with and without the valid inequalities developed

in Section 4.2. For instance sets A and B, both QC0 and QC are able to find optimal

solutions significantly more rapidly when the valid inequalities are incorporated. In set C,

the inclusion of the valid inequalities results in smaller optimality gaps at the end of the

one hour time limit, although none of the gaps is reduced below 2.28%. Hence adding valid

inequalities improves the performance of the MICQ formulation QC.

Table 5: Effect of valid inequalities on the performance of CQ

In
s.

#

Set A Set B Set C

QC0 QC QC0 QC QC0 QC

Gap% Time (s) Gap% Time (s) Gap% Time (s) Gap% Time (s) Gap% Time (s) Gap% Time (s)

1 0.00 441 0.00 149 27.35 3600 0.07 3600 55.42 3600 2.28 3600

2 0.00 127 0.00 105 34.81 3600 0.00 1929 60.60 3600 1.64 3600

3 0.00 170 0.00 102 21.29 3600 0.00 2482 53.60 3600 2.80 3600

4 0.00 411 0.00 190 12.74 3600 0.00 1635 56.75 3600 5.77 3600

5 0.00 146 0.00 126 29.16 3600 0.00 1340 46.89 3600 7.33 3600

6 0.00 98 0.00 58 28.45 3600 0.00 3100 51.61 3600 11.44 3600

7 0.00 337 0.00 136 23.42 3600 0.00 1295 56.63 3600 14.26 3600

8 0.00 175 0.00 87 29.25 3600 0.00 1857 48.80 3600 6.48 3600

9 0.00 1379 0.00 270 29.32 3600 0.00 2240 53.05 3600 48.86 3600

10 0.00 76 0.00 73 28.53 3600 0.00 1153 49.40 3600 12.39 3600

Average 0.00 336 0.00 130 26.43 3600 0.01 2063 53.28 3600 11.32 3600

6 Conclusion

This paper addresses the safety stock placement problem with market selection decisions in

a production-distribution system with load-dependent lead time at the manufacturer. We

formulate the problem as a mixed-integer nonlinear programming (MINLP) model with a

non-convex objective function. After reformulating the problem to eliminate some integer

variables and all bilinear terms, we propose a successive piecewise linearization algorithm

and a mixed-integer conic quadratic formulation. Computational experiments show that

the successive piecewise linearization algorithm outperforms BARON, a state-of-art solver,

and the mixed-integer conic quadratic formulation.

Sequential approaches that first determine the amount of demand to be served and then
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determine safety stock levels based on this decision perform well only under ample capacity,

which allows short manufacturing lead times. When the available demand exceeds the

available capacity, accepting demand levels close to the system capacity results in high lead

times that induce high pipeline inventory and safety stock costs that can more than offset

any additional revenue. Sequential approaches that first determine the demand to be served

and then compute safety stocks fail to consider the impact of producing safety stocks on

lead times; those that assume a fixed lead time implicitly assume that the system can always

maintain the target lead time with no additional costs. Ifinventory holding costs are low

relative to the marginal revenue and customers are willing to tolerate long lead times and

occasional delivery delays, the additional complexity of models such as those proposed is

unlikely to be justified. However, for capital-intensive industries where additional capacity

is expensive, lead times to bring it online are long, inventory holding costs are substantial

or long lead times lead to reduced demand, integrated consideration of queueing behavior,

safety stocks and market selection takes on considerable importance.

The approach proposed in this paper can be extended to the case where each market

involves a set of different products, and to include multiple manufacturers. Modifications

to include finite inventory budgets together with production decisions, such as lot sizing,

production smoothing, or lot scheduling are also interesting to explore in terms of their

interaction with safety stock placements and market selection. The present study assumes

that logistics nodes follow a base stock policy with a common review period. Considering

different review periods at logistics nodes may further decrease supply chain costs and take

into account setup or ordering costs. The emerging optimization problems would be inter-

esting to study but would present computational challenges. Developing efficient solution

procedures for these new problems will also be an interesting future research direction.
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