Advanced search
1 file | 6.08 MB Add to list

Polylactic acid/polyaniline nanofibers subjected to pre- and post-electrospinning plasma treatments for refined scaffold-based nerve tissue engineering applications

Yongjian Guo (UGent) , Rouba Ghobeira (UGent) , Sheida Aliakbarshirazi (UGent) , Rino Morent (UGent) and Nathalie De Geyter (UGent)
(2023) POLYMERS. 15(1).
Author
Organization
Project
Abstract
Composite biopolymer/conducting polymer scaffolds, such as polylactic acid (PLA)/ polyaniline (PAni) nanofibers, have emerged as popular alternative scaffolds in the electrical-sensitive nerve tissue engineering (TE). Although mimicking the extracellular matrix geometry, such scaffolds are highly hydrophobic and usually present an inhomogeneous morphology with massive beads that impede nerve cell-material interactions. Therefore, the present study launches an exclusive combinatorial strategy merging successive pre- and post-electrospinning plasma treatments to cope with these issues. Firstly, an atmospheric pressure plasma jet (APPJ) treatment was applied on PLA and PLA/PAni solutions prior to electrospinning, enhancing their viscosity and conductivity. These liquid property changes largely eliminated the beaded structures on the nanofibers, leading to uniform and nicely elongated fibers having average diameters between 170 and 230 nm. After electrospinning, the conceived scaffolds were subjected to a N2 dielectric barrier discharge (DBD) treatment, which significantly increased their surface wettability as illustrated by large decreases in water contact angles for values above 125° to values below 25°. X-ray photoelectron spectroscopy (XPS) analyses revealed that 3.3% of nitrogen was implanted on the nanofibers surface in the form of C–N and N–C=O functionalities upon DBD treatment. Finally, after seeding pheochromocytoma (PC-12) cells on the scaffolds, a greatly enhanced cell adhesion and a more dispersive cell distribution were detected on the DBD-treated samples. Interestingly, when the APPJ treatment was additionally performed, the extension of a high number of long neurites was spotted leading to the formation of a neuronal network between PC-12 cell clusters. In addition, the presence of conducting PAni in the scaffolds further promoted the behavior of PC-12 cells as illustrated by more than a 40% increase in the neurite density without any external electrical stimulation. As such, this work presents a new strategy combining different plasma-assisted biofabrication techniques of conducting nanofibers to create promising scaffolds for electrical-sensitive TE applications.
Keywords
Polymers and Plastics, General Chemistry, PLA, PAni, nanofibers, APPJ plasma treatment, DBD plasma treatment, PC-12 cells, neurite extension, CARDIAC TISSUE, POLYANILINE, FIBERS, POLYMERS, IMPROVE, BIOCOMPATIBILITY, TOPOGRAPHY, DEPTH, SENSE, ACID)

Downloads

  • polymers.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 6.08 MB

Citation

Please use this url to cite or link to this publication:

MLA
Guo, Yongjian, et al. “Polylactic Acid/Polyaniline Nanofibers Subjected to Pre- and Post-Electrospinning Plasma Treatments for Refined Scaffold-Based Nerve Tissue Engineering Applications.” POLYMERS, vol. 15, no. 1, 2023, doi:10.3390/polym15010072.
APA
Guo, Y., Ghobeira, R., Aliakbarshirazi, S., Morent, R., & De Geyter, N. (2023). Polylactic acid/polyaniline nanofibers subjected to pre- and post-electrospinning plasma treatments for refined scaffold-based nerve tissue engineering applications. POLYMERS, 15(1). https://doi.org/10.3390/polym15010072
Chicago author-date
Guo, Yongjian, Rouba Ghobeira, Sheida Aliakbarshirazi, Rino Morent, and Nathalie De Geyter. 2023. “Polylactic Acid/Polyaniline Nanofibers Subjected to Pre- and Post-Electrospinning Plasma Treatments for Refined Scaffold-Based Nerve Tissue Engineering Applications.” POLYMERS 15 (1). https://doi.org/10.3390/polym15010072.
Chicago author-date (all authors)
Guo, Yongjian, Rouba Ghobeira, Sheida Aliakbarshirazi, Rino Morent, and Nathalie De Geyter. 2023. “Polylactic Acid/Polyaniline Nanofibers Subjected to Pre- and Post-Electrospinning Plasma Treatments for Refined Scaffold-Based Nerve Tissue Engineering Applications.” POLYMERS 15 (1). doi:10.3390/polym15010072.
Vancouver
1.
Guo Y, Ghobeira R, Aliakbarshirazi S, Morent R, De Geyter N. Polylactic acid/polyaniline nanofibers subjected to pre- and post-electrospinning plasma treatments for refined scaffold-based nerve tissue engineering applications. POLYMERS. 2023;15(1).
IEEE
[1]
Y. Guo, R. Ghobeira, S. Aliakbarshirazi, R. Morent, and N. De Geyter, “Polylactic acid/polyaniline nanofibers subjected to pre- and post-electrospinning plasma treatments for refined scaffold-based nerve tissue engineering applications,” POLYMERS, vol. 15, no. 1, 2023.
@article{01GR65M7277VM14HFNKPFKQE4J,
  abstract     = {{Composite biopolymer/conducting polymer scaffolds, such as polylactic acid (PLA)/ polyaniline (PAni) nanofibers, have emerged as popular alternative scaffolds in the electrical-sensitive nerve tissue engineering (TE). Although mimicking the extracellular matrix geometry, such scaffolds are highly hydrophobic and usually present an inhomogeneous morphology with massive beads that impede nerve cell-material interactions. Therefore, the present study launches an exclusive combinatorial strategy merging successive pre- and post-electrospinning plasma treatments to cope with these issues. Firstly, an atmospheric pressure plasma jet (APPJ) treatment was applied on PLA and PLA/PAni solutions prior to electrospinning, enhancing their viscosity and conductivity. These liquid property changes largely eliminated the beaded structures on the nanofibers, leading to uniform and nicely elongated fibers having average diameters between 170 and 230 nm. After electrospinning, the conceived scaffolds were subjected to a N2 dielectric barrier discharge (DBD) treatment, which significantly increased their surface wettability as illustrated by large decreases in water contact angles for values above 125° to values below 25°. X-ray photoelectron spectroscopy (XPS) analyses revealed that 3.3% of nitrogen was implanted on the nanofibers surface in the form of C–N and N–C=O functionalities upon DBD treatment. Finally, after seeding pheochromocytoma (PC-12) cells on the scaffolds, a greatly enhanced cell adhesion and a more dispersive cell distribution were detected on the DBD-treated samples. Interestingly, when the APPJ treatment was additionally performed, the extension of a high number of long neurites was spotted leading to the formation of a neuronal network between PC-12 cell clusters. In addition, the presence of conducting PAni in the scaffolds further promoted the behavior of PC-12 cells as illustrated by more than a 40% increase in the neurite density without any external electrical stimulation. As such, this work presents a new strategy combining different plasma-assisted biofabrication techniques of conducting nanofibers to create promising scaffolds for electrical-sensitive TE applications.}},
  articleno    = {{72}},
  author       = {{Guo, Yongjian and Ghobeira, Rouba and Aliakbarshirazi, Sheida and Morent, Rino and De Geyter, Nathalie}},
  issn         = {{2073-4360}},
  journal      = {{POLYMERS}},
  keywords     = {{Polymers and Plastics,General Chemistry,PLA,PAni,nanofibers,APPJ plasma treatment,DBD plasma treatment,PC-12 cells,neurite extension,CARDIAC TISSUE,POLYANILINE,FIBERS,POLYMERS,IMPROVE,BIOCOMPATIBILITY,TOPOGRAPHY,DEPTH,SENSE,ACID)}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{24}},
  title        = {{Polylactic acid/polyaniline nanofibers subjected to pre- and post-electrospinning plasma treatments for refined scaffold-based nerve tissue engineering applications}},
  url          = {{http://doi.org/10.3390/polym15010072}},
  volume       = {{15}},
  year         = {{2023}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: