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Summary

Summary

The physical problems involving several variables are mathematically expressed

by partial differential equations with specific conditions known as initial or

boundary conditions. In this case, for mathematicians, it is interesting to study

the existence and uniqueness of a solution, stability and so on.

In this thesis, we are concerned with studying the boundary value prob-

lems for fractional partial differential equations (PDEs), particularly, mixed

equations involving the subdiffusion involving hyper-Bessel fractional differen-

tial operator in Caputo sense and classical wave equation or sometimes wave

with fractional order derivative. The application of these types of equations

might appear in the problems of aerodynamics and hydrodynamics in terms

of presenting transonic flow and also, these equations are used to study gas

flow with nearly sonic speeds. We investigate the existence and uniqueness of

a solution in every case. Our main technique is to find the main functional

relations from both domains and come to the ordinary differential equations

and/or Fredholm integral equations. Moreover, the method of separation of

variables is mostly used and using the completeness property of the system of

eigenfunctions is applied in many cases. The problems we have solved have dif-

ferences from each other in the type of fractional differential operator, boundary

conditions, domains on which the problems are considered, and the methods

for proving the uniqueness of a solution.

This dissertation consists of 4 chapters. In the first chapter, the auxiliary

results and the mathematical background are presented. Subsequent chapters

are based on 6 papers published in well-respected journals.

In the second chapter, we considered two problems, particularly, the

boundary value problem and the nonlocal problem for the mixed equation in-

volving subdiffusion and classical wave equation. In both problems, the inte-
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Summary

gral energy method is used for proving the uniqueness of a solution. In order

to show the existence, we derived the Fredholm integral equation which comes

from main functional relations. The entire chapter is based on these two papers

[119], [120] published in journals “Bulletin of the Institute of Mathematics” and

“Montes Taurus Journal of Pure and Applied Mathematics”.

Chapter 3 is devoted to the study of 3 nonlocal problems for mixed equa-

tions involving with one-dimensional subdiffusion and fractional wave equa-

tions. The equations differ from each other with the fractional differential

operators, the nonlocal conditions and domains are also taken differently. The

main approach is the method of separating variables and the uniqueness of a

solution is based on the completeness of the system of eigenfunctions. All these

three problems are published with full details in the journals “Mathematical

Methods in the Applied Sciences” [122] (joint work with M. Ruzhansky and

E. Karimov), “Fractional Differential Calculus” [123], “Uzbek Mathematical

Journal” [121] (joint work with E. Karimov).

The last chapter deals with the two direct and inverse problems for frac-

tional pseudo-parabolic equations. In section 4.1, the nonlocal problem for the

Langevin-type equation is discussed. The solution is found in form of Fourier-

Legendre series. With the help of the properties of Legendre polynomials,

we showed the existence of the solution. The result is published in the jour-

nal “International Journal of Applied Mathematics” [124] (joint work with E.

Karimov). In addition, the inverse problem determining the time-dependent

source term by means of an additional energy measurement is also considered

for the same Langevin-type equation. The next section in this chapter dis-

cusses the solvability (uniqueness and existence) of direct and inverse problems

for the pseudo-parabolic equation for 2D Landau Hamiltonian defined on the

plane. Using the global Fourier analysis the theorems of the uniqueness and
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Summary

existence of generalized solutions to the direct and inverse problems are proved.

For the inverse problem (determination of a single location-dependent source

based on a measurement at the final time) the stability analysis of the solution

is also considered. In all problems, we have used the completeness properties

of the system of eigenfunctions in order to show the uniqueness of a solution.

The paper containing these results has been submitted for publication to the

“Georgian Mathematical Journal”.
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Samenvatting

Samenvatting

Samenvatting Fysische problemen worden vaak gemodelleerd met behulp van

partiële differentiaalvergelijkingen (PDVn) en aangevuld met bijkomende voor-

waarden die bekend staan als begin- of randvoorwaarden. Voor wiskundigen is

het dan bijvoorbeeld interessant om het bestaan, de uniciteit en stabiliteit van

een oplossing te bestuderen.

De doelstelling van het proefschrift is om gemengde vraagstukken, die

bestaan uit diffusie- en golfvergelijkingen met fractionele-orde afgeleide gefor-

muleerd op aangrenzende (tijds)domeinen, te onderzoeken. Deze problemen

hebben toepassingen in aerodynamica en hydrodynamica. Bovendien wor-

den deze vergelijkingen ook bijvoorbeeld gebruikt om een gasstroom met (bij

benadering) transsonische snelheid te modelleren. De gemengde vergelijkin-

gen bestaan uit een subdiffusie vergelijking (een fractionele warmtevergelijking

met hyper-Bessel fractionele operator in de zin van Caputo) en een klassieke

golfvergelijking of golfvergelijking met fractionele orde. Voor elk vraagstuk on-

derzoeken we het bestaan en de uniciteit van een oplossing. De oplossingsmeth-

ode bestaat eruit om representaties van de oplossingen op beide domeinen te

vinden, en via bijkomende voorwaarden het probleem te reduceren tot een

gewone differentiaalvergelijkingen en/of Fredholm-integraalvergelijkingen. Hi-

erbij maken we gebruik van de methode van scheiding van veranderlijken en

de eigenschap i.v.m. volledigheid van de eigenfuncties. De problemen die we

hebben opgelost in de proefschrift kunnen van elkaar onderscheiden worden door

het type van de fractionele differentiaaloperator, de beschouwde randvoorwaar-

den, de domeinen waarop de problemen worden geformuleerd en de methoden

om de uniciteitsresultaten te bewijzen.

Dit proefschrift bestaat uit vier hoofdstukken. In Hoofdstuk 1 worden

de hulpresultaten en de wiskundige achtergrond van het onderzoek geschetst.
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Samenvatting

Hoofdstukken 2-4 bevatten de resultaten van zes publicaties in gerespecteerde

tijdschriften. De dissertatie wordt afgesloten met een samenvatting van de

belangrijkste resultaten en enkele perspectieven voor verder onderzoek. In

Hoofdstuk 2 bestuderen we twee gemengde vraagstukken bestaande uit een

eendimensionale subdiffusie- en (klassieke) golfvergelijking, met respectievelijk

klassieke en niet-lokale randvoorwaarden. De gemaakte analyse is analoog aan

de gevolgde aanpak in Hoofdstuk 1. Ten eerste is de energiemethode gebruikt

om de uniciteit van een oplossing aan te tonen. Ten tweede wordt het bestaan

van een oplossing bekomen gebruik makend van de theorie van de Fredholm

integraalvergelijkingen. Hoofdstuk 2 is gebaseerd op artikels [119], [120] gepub-

liceerd in de tijdschriften “Bulletin of the Institute of Mathematics’ en “Montes

Taurus Journal of Pure and Applied Mathematics”.

Hoofdstuk 3 is gewijd aan de studie van drie niet-lokale gemengde

vraagstukken met eendimensionale subdiffusie- en fractionele golfvergelijkin-

gen. De problemen onderscheiden zich van elkaar door het beschouwen van

verschillende fractionele differentiaaloperatoren, niet-lokale randvoorwaarden

en domeinen. Opnieuw is de oplossingsmethode gebaseerd op de methode van

scheiding van veranderlijken, terwijl de uniciteit van een oplossing nu bouwt

op de volledigheid van het stelsel van eigenfuncties. De inhoud van dit hoofd-

stuk is gebaseerd op drie artikels gepubliceerd in de tijdschriften “Mathematical

Methods in the Applied Sciences” [122], “Fractional Differential Calculus” [123],

“Uzbek Mathematical Journal” [121].

Hoofdstuk 4 behandelt directe en inverse problemen voor fractionele

pseudo-parabolische vergelijkingen. Eerst bestuderen we het goed gesteld zijn

van een niet-lokale eendimensionale Langevin PDV. De oplossing wordt gerepre-

senteerd als een Fourier-Legendre reeks. Met behulp van de eigenschappen van

Legendre polynomen tonen we het bestaan van een (unieke) oplossing aan. Het
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resultaat van dit onderzoek is gepubliceerd in het tijdschrift “International Jour-

nal of Applied Mathematics” [124]. Daarna focussen we op de reconstructie van

een louter tijdsafhankelijke bron in dezelfde Langevin PDV door middel van een

bijkomende energiemeting. Dit is een voorbeeld van een invers bronprobleem.

De volgende sectie in dit hoofdstuk onderzoekt de oplosbaarheid (existentie en

uniciteit) van directe en inverse problemen voor de pseudo-parabolische Landau

Hamiltoniaan vergelijking, gedefinieerd in het vlak. Voor het inverse vraagstuk

(bepaling van een enkel plaatsafhankelijke bron op basis van een meting op

het eindtijdstip) wordt ook een stabiliteitsanalyse op de oplossing uitgevoerd.

In alle problemen gebruiken we de volledigheidseigenschap van het stelsel van

eigenfuncties om de existentie van een unieke oplossing te bekomen. Het artikel

met deze resultaten is ingediend voor publicatie bij het “Georgian Mathematical

Journal”.
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Introduction

Actuality and demand of the theme of the dissertation. The the-

ory of partial differential equations (PDEs) is one of the important branches

of mathematics which can be used to mathematically formulate and solve the

physical and other problems involving functions of several variables, such as the

fluid flow, propagation of heat or sound, elasticity, electrostatics, electrodynam-

ics, etc [12]. Boundary-value, initial-value and initial-boundary value problems

are 3 major types of problems for PDEs. We also note that PDEs can be cate-

gorized according to the type as hyperbolic, parabolic and elliptic, and mixed

type PDE such as parabolic-hyperbolic, hyperbolic-elliptic or parabolic-elliptic

[14], [92].

The most fundamental results on mixed-type PDEs were presented by

Chaplygin [20] and the following equation is also called by his name which is

closely connected with the theory of gas flow:

K(y)uxx + uyy = 0.

In order to show the importance of the mixed-type equation in studying tran-

sonic flow let us consider a two-dimensional adiabatic potential flow of a perfect

gas [93]. The stream function u = u(x, y) satisfies(
ρ2α2 − u2y

)
uxx + 2uxuyuxy +

(
ρ2α2 − u2x

)
uyy = 0, (∗)

where α is the local velocity of sound, ρ is the density of the gas.

1



Introduction

We use the hodograph transformation φ = ρ−1uy, ψ = −ρ−1ux and here

φ, ψ are the rectangular velocity components as new independent variables. We

consider the polar coordinates with respect to the corresponding components:

r =
√
φ2 + ψ2, θ = tan−1

(
ψ

φ

)
.

Now we introduce new independent variable t =
(
r
r0

)
in order to normalize r,

where r0 is the speed corresponding to zero density, then the above equation

(*) becomes

∂

∂t

{
2t

(1− t)β
ut

}
+

1− (1 + 2β)t

2(1− t)β+1
uθθ = 0,

where β = cψ/(cp − cψ), such that cp denotes the specific heat at a constant

pressure, cψ is the specific heat at a constant volume and r0 = kγρ−1
0 /(γ − 1),

γ = cp/cψ, ρ0 is the density of gas at zero speed, k = const, such that p = kργ.

We introduce the following notations

ξ = θ, η = −
t∫

1
2β+1

(1− s)β

2s
ds.

Then, by applying this transformation to the last equation, we obtain the fol-

lowing Chaplygin equation

K(η)uξξ + uηη = 0, (∗∗)

where K(η) =
1− (1 + 2β)t

(1− t)1+2β
.

In addition, K(0) = 0, that is η = 0 for t = 1
2β+1 , in this case the velocity

is equal to the local velocity of sound, and therefore above equation type (**)

will be parabolic.

Moreover, K(η) > 0, for t < 1
2β+1 , η > 0, corresponding to subsonic

velocities, and equation (**) will be elliptic.

Furthermore, K(η) < 0, because η < 0 for t > 1
2β+1 , corresponding to

supersonic velocities, and equation (**) becomes hyperbolic. Therefore, the

2



Introduction

PDE (**) is called as mixed type. This is one of the examples which shows the

importance of studying mixed type PDEs in applied sciences.

At the same time it is worth saying, many real-world problems can be

better explained with fractional operators than using integer order calculus.

The investigations of real-life problems based on solving fractional differential

equations have been gaining the considerable popularity and importance be-

cause of their an adequate applications in many fields of science, engineering in

the last few decades [113], [80], [77].

In terms of considering the boundary-value problems for PDEs, we can

also divide them into two big classes, i.e. direct and inverse problems. The

direct problems are usually specialized in finding solutions, however if it is re-

quired to determine the coefficients or right-hand side (the source term, in the

case of the heat equation, for example), initial or boundary condition, order

of the equation (in fractional order case) additionally to the sought solution

based on some additional given data, then such problems are known as inverse

problems. Inverse problems may appear in various areas of human activity, for

instance, biology, medicine, mineral exploration, quality control of industrial

goods and others [50]. The references [104], [8] devoted to studying inverse

source problems for linear and nonlinear PDEs are worth noting, which pre-

sented some exciting results.

In this dissertation we mostly dealt with investigating direct and inverse

problems for mixed equations with fractional order derivatives which can be

more general than aforementioned problems. An interesting and distinctive

feature of the fractional calculus is that it is possible to present different defini-

tions of fractional order integrals and derivatives; furthermore, many instances

of those definitions are being applied and discussed to analyze certain processes

[109]. As an example, we can take the Riemann-Liouville and Caputo fractional

3
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order integral-differential operators which have been used widely to describe

mathematical models of the many natural phenomena (see the references [91],

[4], [84], [32], [85], [9]). In our case, we have used more general fractional differ-

ential operators such as the bi-ordinal Hilfer fractional differential operator and

regularized Caputo-like counterpart of hyper-Bessel differential operator which

are main tools to investigate further problems. In general, the bi-ordinal Hilfer

fractional differential operator is preserved in terms of its interpolation con-

cept, more precisely, when µ = 0, it describes the Riemann-Liouville fractional

derivative of β order and for µ = 1, the bi-ordinal Hilfer derivative expresses the

Caputo fractional derivative of order α. Similarly, the regularized Caputo-like

counterpart of hyper-Bessel differential operator is also generalizes the Caputo

fractional differential operator in terms of singular case. Using these types of

differential operators gives us a chance to obtain more general results which can

be applicable in a wide broad of applications and helps to improve the quality

of research.

The degree of scrutiny of the problem: In recent years study-

ing boundary value problems for fractional order mixed PDEs become of interest

in connection with their applications in many branches of mathematical physics

[55]. Using more general fractional differential operators gives us a chance to

improve the quality of research in terms of modeling real-life phenomena. In-

vestigating the dynamics and movements of gas in the channel surrounded by

a porous medium with the help of the mixed-type partial differential equations

was proposed by I.M. Gelfand. He also showed that studying the propagation

of vibrations in complicated electrical networks can be explained by means of

mixed-type PDEs.

The beginning of effective investigations on mixed PDEs dates back to

years in the last century. The interesting results were taken by Chaplygin,

4
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Tricomi, Gelfand and others. Later, the fundamental results for parabolic-

hyperbolic equations were developed by Salahitdinov, Juraev, Nakhushev,

Vragov, and Kapustin. Currently, a huge number of works have been carry-

ing out for fractional and integer parabolic-hyperbolic PDEs. In particular, Sh.

Alimov, R. Ashurov, J. Tokhirov, A. Berdyshev, A. Pskhu, K. Sabitov, M. Sady-

bekov, E. Karimov, A.Urinov, Y. Apakov, A. Nagornyy and others studied local

and nonlocal boundary value problems for parabolic-hyperbolic equations with

a characteristic line of type changing and investigated the spectral properties

of various boundary value problems for such equations. In addition, proposing

and studying various types of problems for PDEs involving the fractional order

differential operators are being gained a great interests for mathematicians. In

particular, M. Yamamoto, R. Ashurov, M. Slodicka, Y. Luchko, V. Kiryakova,

B. Turmetov, B. Kadirkulov, N. Tokmagambetov, H.M.Srivastava, M. Kirane,

E. Karimov, N. Salte, D. Durdiev, M. Ruzhansky and others are working on

such equations.

Investigating inverse problems for PDEs involving fractional order differ-

ential operators is also important part of research carried out in mathematics

because of its applications in science and engineering. While essential results

have been obtained by R. Ashurov on determining the order of the PDEs in the

inverse problems, the inverse source problem for finding time dependent source

are investigated by M. Slodicka, S. Malik, A. Hazanee and others. Despite of

those investigations, there are still some open problems which have interesting

applications.

The obtained results came out from discussions between associative pro-

fessor E.T. Karimov (Institute of Mathematics, Uzbekistan) and professor M.

Ruzhansky (Ghent University, Belgium) during my visits for studying joint-

PhD program in 2021-2022.

5
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The aim of research work: To study the unique solvability of

direct and inverse problems for singular PDEs with fractional order integral-

differential operators.

Research methods. In the dissertation several methods have been

applied. For example, in order to show the uniqueness of the result, we mainly

address the completeness property of the system of eigenfunctions while the

method of energy integrals is applicable. To show the existence of the result we

mostly analyze the second kind of Fredholm integral equation. Furthermore,

properties of Mittag-Leffler function and Fourier-Bessel, Fourier-Legendre series

are applied, as well.

Scientific novelty of the research work is presented as follows:

A new definition of a regularized Caputo-like counterpart of hyper-Bessel frac-

tional differential operator with arbitrary starting point is introduced and the

solution of Cauchy problem is presented;

A unique solvability of an analogy of the Tricomi problem for the mixed

equation involving subdiffusion equation and wave equation is proved;

Frankl type problem for the mixed equation involving subdiffusion and

wave equations is investigated for unique solvabilty;

An unique solution of the Cauchy-type problem for ordinary fractional dif-

ferential equation with the right hand-sided bi-ordinal Hilfer fractional deriva-

tive is found explicitly;

The uniqueness and existence results are proved for a non-local boundary

value problem which is formulated for mixed FPDEs;

Direct and inverse problems are investigated for the pseudo-parabolic

equation involving with the bi-ordinal Hilfer fractional derivative and unique

solvability of considered problems is proved.

Scientific and practical significance of the research results.

6
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The results of this thesis are mainly of theoretical significance. The results have

a scientific impact to improve the quality of research in studying the different

types of problems for mixed PDEs. Moreover, we have used specific fractional

differential operators which play an essential role to generalize these kinds of

problems.

When it comes to the practical significance of the thesis, it can be a

particular cases of several models of physical phenomena. For example, a gas

movement in a channel surrounded by porous medium will be governed by

the mixed parabolic-hyperbolic type equation, because inside of the channel

movement will be described by the wave equation, in porous media by diffusion

equation. Our results can be an example in terms of generalizing these types

of problems related to these models. Moreover, the results can be used to

develop the model which describes the behaviour of a quantum particle in two

dimensions under the influence of a constant magnetic field.

Approbation of the research results. The main result of the

dissertation were discussed at the following international and republic scien-

tific conferences: “Modern problems of mathematics and informatics” (Fergana

2019), “Modern problems of differential equations and related branches of math-

ematics” (Fergana 2020), “Actual problems of Stochastic Analysis”, (Tashkent

2021), “Annual International April Mathematical Conference” (Almaty 2021),

“Modern problems of applied mathematics and information technologies al-

Khwarizmi 2021” (Fergana 2021), “Modern problems of applied mathematics

and information technologies” (Bukhara 2022), “Annual International April

Mathematical Conference-2022” (Almaty 2022)

This dissertation work was discussed at the republican seminars “Modern

problem of mathematical physics” and the seminar of department of “Differen-

tial equations and their applications” of the Institute of Mathematics, Uzbek-

7
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istan Academy of Sciences and at the seminar of “Namangan branch of Institute

of Mathematics”.

Publications of the research results. On the topic of the dis-

sertation, 13 scientific papers were published, 6 of which are included in the list

of scientific publications proposed by the Higher Attestation Commission of the

Republic of Uzbekistan for the defense of theses of the Doctor of Philosophy,

including 4 of them published in foreign journals and 2 in national scientific

journals and 7 abstracts.

The structure and volume of the dissertation. The dissertation

consists of the introduction, 4 chapters, summary and bibliography. The total

volume of the thesis is 156 pages.

8



Chapter 1

Preliminaries

In this chapter, we briefly give the necessary definitions, main properties of

the fractional integral-differential operators which are used in further chapters.

Also, we give main notations and a brief introduction to the fractional calculus,

as well.

1.1 Fractional calculus - Short historical survey

Fractional calculus is as old as classical calculus with integer order of derivative.

It dates back to 17 century when G. A. l’Hopital asked a question to G. W.

Leibniz in order to know the meaning of the derivative
dn

dxn
when n = 1

2 . G.

W. Leibniz carefully replied: ”This is an apparent paradox from which, one

day, useful consequences will be drawn...”. This time is believed that an initial

point of the fractional calculus.

Before presenting the definitions of fractional differential operators we

use subsequent chapters, it is worth highlighting the important works (events)

proposed by many mathematicians that have taken place so far. For example, G.

W. Leibniz mentioned the term derivative of the general order in another letter

to J. Bernoulli. In 1697, G. W. Leibniz wrote a letter to J. Wallis to discuss

his infinite product for π and used a notation d
1
2y to signify the derivation of

9



1.2. A brief introduction to functional spaces

order 1
2 . While P.S. Laplace wrote an expressions for derivative of non-integer

order, S. F. Lacroix obtained formally the derivative of order 1
2 , arriving at the

expression
d1/2

dx1/2
x =

2
√
x

π
. J. Liouville suggested the formula for differentiating

of non-integer order in terms of infinite series in 1835. In 1855, he proposed

a series of definitions for fractional derivative and then in 1873 he discussed

the integration of differential equations with fractional order. B. Riemann also

introduced an expression for the fractional integral with two changes comes to

the expression we use today. For complete time line of events in this area during

1695-1970 see [75]

In short, during the last centuries, many mathematicians developed and

generalized the idea of fractional integration and differentiation. For exam-

ple, Caputo developed a definition, more appropriate than Riemann-Liouville

derivative. Differentiating of non-integer order of the Caputo version is consid-

ered an important tool to discuss many problems involving fractional derivative.

In 1968, M. M. Dzhrbashian and A. B. Nersesyan published an important

paper devoted to studying a general fractional differential operator similar to the

Caputo operator. So far, a huge number of articles have been published devoted

to studying Fractional Calculus which shows its importance in Mathematics.

The all information of the development of the fractional calculus, from its origins

until recent times, is taken from these references [75], [83], [78], [76], [19].

1.2 A brief introduction to functional spaces

Before moving on to the basic information about fractional integral and differen-

tial operators, let us consider some spaces in which above mentioned operators

are defined. We refer [85], [66], [23] for further discussion in this direction.

Let Ω = [a, b] be a finite or infinite interval on the real axis R. The set

10



1.2. A brief introduction to functional spaces

of Lebesgue complex-valued measurable functions on Ω is denoted by Lp(a, b)

1 ≤ p <∞ with the following norm

∥f∥Lp(a,b) =

 b∫
a

|f(x)|p dx


1
p

and

∥f∥L∞(a,b) = ess sup
a≤x≤b

|f(x)|

where ess sup |f(x)| is the essential maximum of the function |f(x)|; for 1 ≤

p < ∞ it forms a Banach space. When p = 2, the set of L2(Ω) is represented

as a Hilbert space with the following scalar product

(f, g) =

b∫
a

f(x)g(x)dx.

Definition 1.2.1. Let Ω = [a, b] be a finite interval on R and n ∈ N. We

denote by AC[a, b] the space of absolutely continuous functions on Ω, i.e,

f(x) ∈ AC[a, b] ⇔ f(x) = c+

x∫
a

φ(t)dt, φ(t) ∈ L1(a, b).

Also, we denote by ACn[a, b] the space of complex-valued functions which have

absolute continuous derivatives up to order n− 1 on [a, b], i.e,

ACn[a, b] =
{
f : [a, b] → C, f (n−1)(x) ∈ AC[a, b]

}
.

Definition 1.2.2. Let Ω = [a, b] and m ∈ N0 = {0, 1, 2, 3, ..., }. We introduce

Cm(Ω) the space of functions f which are m times continuously differentiable

on Ω defined by the following norm

∥f∥Cm(Ω) =
m∑
k=0

∥∥∥f (k)∥∥∥
C(Ω)

=
m∑
k=0

max
x∈Ω

∣∣∣f (k)(x)∣∣∣ .

11



1.3. Fractional differential operators

We also use a weighted modification of the space C[a, b] (n ∈ N0) which

was introduced for the first time by Dimovski in his papers devoted to the

operational calculus for the hyper-Bessel differential operator [23] for the first

time in 1966:

C(n)
µ :=

{
f(t) = tpf1(t), f1(t) ∈ C(n)[0,∞)

}
, Cµ := C(0)

µ with ν ∈ R (1.2.1)

if there exists p > µ for fixed µ ≥ −1. Clearly, Cµ is a vector space and the set

of spaces Cµ is ordered by inclusion according to [49]

Cµ ⊂ Cδ ⇔ µ ≥ δ.

In 2000, Kilbas et.al. presented [65] the weighted space Cγ[a, b] of func-

tions g on [a, b] such that (t− a)γg(t) ∈ C[a, b] in the similar meaning:

Cγ[a, b] =
{
g(t) : ∥g∥Cγ

= ∥(t− a)γg(t)∥C <∞
}
.

The weighted space Cn
γ [a, b] of functions g on [a, b] is defined by

Cn
γ [a, b] =

{
g : [0, T ] → R, g(n−1)(t) ∈ C[a, b]; g(n)(t) ∈ Cγ[a, b]

}
with the norm

∥g∥Cn
γ
=

n−1∑
k=0

∥g(k)∥C[a,b] + ∥g(n)∥Cγ [a,b].

The properties and the usage of these spaces are presented in the refer-

ences devoted to studying the problems involving Hilfer fractional differential

operator (see [66], [37]).

1.3 Fractional differential operators

1.3.1 The Riemann-Liouville and Caputo fractional differential op-

erators

Now, we give the definitions of the Riemann-Liouville fractional integrals and

fractional derivatives on a finite interval Ω = [a, b] (−∞ < a < b < ∞) of the

12



1.3. Fractional differential operators

R. More detailed information might be found in the references [85], [66].

Definition 1.3.1. [66] The left-hand sided Riemann-Liouville fractional inte-

gral Iαa+f(t) and the right hand-sided integral Iαb−f(t) of order α > 0 are defined

by

Iαa+f(t) =
1

Γ(α)

t∫
a

f(τ)dτ

(t− τ)1−α
, t > a,

and

Iαb−f(t) =
1

Γ(α)

b∫
t

f(τ)dτ

(τ − t)1−α
, t < b,

respectively, where Γ(α) is Euler’s gamma-function.

Lemma 1.3.2. [73], [74] The Riemann-Liouville fractional integral Iα, α ≥ 0,

is a linear map of the space Cµ, µ ≥ −1, into itself, that is

Iα : Cµ → Cα+µ ⊂ Cµ.

Definition 1.3.3. [66] The left-hand sided Riemann-Liouville fractional deriva-

tive Dα
a+f(t) and the right hand-sided derivative Dα

b−f(t) of order α (n − 1 <

α ≤ n) defined as

Dα
a+f(t) =

(
d

dt

)n
In−αa+ f(t) =

=
1

Γ(n− α)

(
d

dt

)n t∫
a

(t− τ)n−α−1 f(τ)dτ

and

Dα
b−f(t) = (−1)n

(
d

dt

)n
In−αb− f(t) =

=
1

Γ(n− α)

(
− d

dt

)n b∫
t

(τ − t)n−α−1 f(τ)dτ,

These operators satisfy the following properties [66].

13



1.3. Fractional differential operators

Property 1.3.4. If α > 0, β > 0 and t ∈ [a, b], f(t) ∈ Lp(a, b), (1 ≤ p <∞)

Iαa+I
β
a+f(t) = Iα+βa+ f(t) and Iαb−I

β
b−f(t) = Iα+βb− f(t).

Property 1.3.5. If f(t) ∈ L1(a, b) and In−αa+ f(t) ∈ ACn[a, b], then the inequal-

ity

Iαa+D
α
a+f(t) = f(t)−

n∑
j=1

(t− a)α−j

Γ(α− j + 1)

[
lim
t→a+

(
d

dt

)n−j
In−αa+ f(t)

]
,

Iαb−D
α
b−f(t) = f(t)−

n∑
j=1

(−1)n−j(b− t)α−j

Γ(α− j + 1)

[
lim
t→b−

(
d

dt

)n−j
In−αb− f(t)

]
hold almost everywhere on [a, b].

Property 1.3.6. Let α > 0, p ≥ 1, q ≥ 1 and 1
p +

1
q ≤ 1 + α (p ̸= 1, and q ̸= 1

in the case when 1
p +

1
q = 1 + α). If f(t) ∈ Iαb−(L

p) and g(t) ∈ Iαa+(L
q), then

b∫
a

f(t)Dα
a+g(t)dt =

b∫
a

g(t)Dα
b−f(t)dt.

Lemma 1.3.7. If g(t) ∈ L1(−T, 0), T > 0, α > 0, λ ∈ C, then

y(t)− λ

Γ(α)

0∫
t

(s− t)α−1Eα,α [λ(s− t)α] y(s)ds = g(t),

integral equation has the following unique solution

y(t) = g(t) + λ

0∫
t

(s− t)α−1Eα,α[λ(s− t)α]g(s)ds.

The solution of the integral equation with the left-sided Riemann-Liouville

integral operator second kind was found in [94] by means of the Laplace trans-

form. For ascertaining the result of Lemma 1.3.7 one can easily check by sub-

stituting the result into the equation.

14



1.3. Fractional differential operators

Definition 1.3.8. [66] The left-sided CDα
a+f(t) and right-sided CDα

b−f(t) Ca-

puto derivatives of order α (n− 1 < α ≤ n) are defined by

CDα
a+f(t) = Dα

a+

[
f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k

]
and

CDα
b−f(t) = Dα

b−

[
f(t)−

n−1∑
k=0

f (k)(a)

k!
(b− t)k

]
respectively.

Lemma 1.3.9. Let α > 0 and if f(t) ∈ ACn[a, b], then Caputo fractional

derivative exist almost everywhere on [a, b]. Moreover CDα
a+f(t) and

CDα
b−f(t)

are represented by

CDα
a+f(t) = In−αa+ Dnf(t)

and

CDα
b−f(t) = (−1)nIn−αb− Dnf(t)

respectively, where D = d/dt, n = [α] + 1.

Definition 1.3.10. The right-sided Dα,µ
a+ and the left-sided Dα,µ

b− Hilfer frac-

tional derivatives of order α (0 < α ≤ 1) and type µ (0 ≤ µ ≤ 1) are defined

by

Dα,µ
a+ f(t) = I

µ(1−α)
a+

d

dt
I
(1−µ)(1−α)
a+ f(t), (1.3.1)

and

Dα,µ
b− f(t) = −Iµ(1−α)b−

d

dt
I
(1−µ)(1−α)
b− f(t). (1.3.2)

When µ = 0 (1.3.1)-(1.3.2) yield the classical left-sided and right-sided

Riemann-Liouville fractional differential operators of order α and for µ = 1,

these denote the left-sided and right-sided Caputo fractional derivative of order

α.
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1.3. Fractional differential operators

In [18] M. Bulavatsky introduced the concept of bi-ordinal fractional

derivative which is generalization of the Hilfer derivative (1.3.1) in terms of

two orders by following form

Dα,µ
a+ f(t) = I

µ(1−α)
a+

d

dt
I
(1−µ)(1−β)
a+ f(t), (0 < α, β ≤ 1; 0 ≤ µ ≤ 1). (1.3.3)

1.3.2 Representations of the bi-ordinal Hilfer fractional derivative

Definition 1.3.11. Let I
(1−µ)(1−β)
a+ f(t) ∈ ACn[a, b] and I

(1−µ)(1−β)
b− f(t) ∈

ACn[a, b]. Then the left-sided and right-sided bi-ordinal Hilfer fractional deriva-

tive of orders α (n − 1 < α ≤ n) and β (n − 1 < β ≤ n) type µ ∈ [0, 1] are

defined as follows:

D
(α,β)µ
a+ f(t) = I

µ(n−α)
a+

(
d

dt

)n
I
(1−µ)(n−β)
a+ f(t), (1.3.4)

D
(α,β)µ
b− f(t) = I

µ(n−α)
b−

(
− d

dt

)n
I
(1−µ)(n−β)
b− f(t). (1.3.5)

Remark 1.3.12. We have the following comments:

1) The bi-ordinal Hilfer derivative D
(α,β)µ
a+ f(t) can be written as

D
(α,β)µ
a+ f(t) = I

µ(n−α)
a+

(
d

dt

)n
I
(1−µ)(n−β)
a+ f(t) = I

µ(n−α)
a+

(
d

dt

)n
In−γa+ f(t)

= I
µ(n−α)
a+ Dγ

a+f(t) = Iγ−δa+ Dγ
a+f(t),

for t ∈ [a, b], where γ = β + µ(n− β) and δ = β + µ(α− β).

2) In general, (1.3.4) is also preserved as (1.4) in terms of its interpolation

concept. Specifically, when µ = 0, (1.3.4) gives Riemann-Liouville fractional

derivative of β order and for µ = 1, the bi-ordinal Hilfer fractional derivative

(1.3.4) expresses the Caputo fractional derivative of order α i.e,

D
(α,β)µ
a+ f(t) =

D
β
a+f(t), µ = 0,

CDα
a+f(t), µ = 1.
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1.3. Fractional differential operators

3) The parameters γ and δ satisfy the following inequalities:

n− 1 < γ ≤ n, γ > β, n− 1 < δ ≤ n, n ∈ N.

These comments are also true for D
(α,β)µ
b− f(t).

Proposition 1.3.13. Let µ ∈ (0, 1). An equivalent form of the bi-ordinal Hilfer

derivative for 0 < δ ≤ 1 and 0 < γ ≤ 1 can be written as follows

D
(α,β)µ
a+ f(t) = CDδ

a+f(t) +
f(a+)(t− a)−δ

Γ(1− δ)
.

Proof. Let us introduce the following assignation with assuming µ ̸= 1:

φ(t) =
d

dt
I
(1−µ)(1−β)
a+ f(t) =

d

dt
I1−γa+ f(t) =

d

dt

1

Γ(1− γ)

t∫
a

(t− s)−γf(s)ds,

here 1− γ = (1− µ)(1− β).

Integration by parts yields

φ(t) =
d

dt

1

Γ(1− γ)

−(t− s)1−γ

1− γ
f(s)

∣∣t
a
+

t∫
a

(t− s)1−γ

1− γ
f ′(s)ds



=
d

dt

1

Γ(1− γ)

(t− a)1−γ

1− γ
f(a+) +

t∫
a

(t− s)1−γ

1− γ
f ′(s)ds


=

(t− a)−γ

Γ(1− γ)
f(a+)+

1

Γ(1− γ)

t∫
a

(t− s)−γf ′(s)ds = I1−γa+ f ′(t) +
f(a+)(t− a)−γ

Γ(1− γ)
.

According to above assignation and using the properties of the Riemann-

Liouville fractional integral, we write the bi-ordinal Hilfer derivative in the

following form

D
(α,β)µ
a+ f(t) = I

µ(1−α)
a+ φ(t) = I

µ(1−α)
a+

[
I1−γa+ f ′(t) +

f(a+)(t− a)−γ

Γ(1− γ)

]
= Iµ−µα+1−γ

a+ f ′(t) +
f(a+)(t− a)µ−µα−γ

Γ(1 + µ− µα− γ)
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1.3. Fractional differential operators

= I1−δa+ f ′(t) +
f(a+)(t− a)−δ

Γ(1− δ)
= CDδ

a+f(t) +
f(a+)(t− a)−δ

Γ(1− δ)
,

here we have used this assignation δ = µ− µα− γ = β + µ(α− β). The proof

is completed.

When µ = 1, the calculations in the proof of Proposition lose their mean-

ing and the second idea in the Remark 1.3.12 will be valid.

Remark 1.3.14. If 0 < α, β ≤ 1, 0 ≤ µ ≤ 1, f(t) ∈ C1−γ[a, b], then the

left-side bi-ordinal Hilfer fractional derivative of orders α, β and type µ can be

expressed equivalently as

D
(α,β)µ
a+ f(t) = Dδ

a+

(
f(t)− I1−γa+ f(a)

Γ(γ)
(t− a)γ−1

)
,

here γ = β + µ(1− β), δ = β + µ(α− β), I1−γa+ f(a) = lim
t→a+

I1−γa+ f(t).

Proof.

D
(α,β)µ
a+ f(t) = Iγ−δa+

d

dt
I1−γa+ f(t) =

d

dt
I1a+I

γ−δ
a+

d

dt
I1−γa+ f(t)

=
d

dt
Iγ−δa+ I1a+

d

dt
I1−γa+ f(t) =

d

dt
Iγ−δa+

[
I1−γa+ f(t)− I1−γa+ f(a)

]
=

d

dt
I1−δa+ f(t)− d

dt

I1−γa+ f(a)

Γ(1 + γ − δ)
(t− a)γ−δ

=
d

dt
I1−δa+

[
f(t)− I1−γa+ f(a)

Γ(1 + γ − δ)
Iδ−1
a+ (t− a)γ−δ

]

=
d

dt
I1−δa+

[
f(t)− I1−γa+ f(a)

Γ(γ)
(t− a)γ−1

]
= Dδ

a+

(
f(t)− I1−γa+ f(a)

Γ(γ)
(t− a)γ−1

)
.

The proof is completed.

Lemma 1.3.15. If In−γ0+ g ∈ ACn(a, b), n− 1 < α, β ≤ n and 0 ≤ µ ≤ 1, then

Iδ0+D
(α,β)µ
0+ g(t) = g(t)−

n∑
k=1

tγ−k

Γ(γ − k + 1)

[
lim
t→0+

(
d

dt

)n−k
In−γ0+ g(t)

]
=
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1.3. Fractional differential operators

= g(t)−
n∑
k=1

Cn−k · tγ−k

Γ(γ − k + 1)
,

where δ = β + µ(α− β), γ = β + µ(n− β), Cn−k = lim
t→0+

(
d
dt

)n−k
In−γ0+ g(t).

Proof. The proof of Lemma 1.3.15 can be derived from the Remark 1.3.12 and

the composition Iαa+D
α
a+ of the Riemann-Liouville fractional integration Iαa+ and

differentiation operator Dα
a+ presented in Property 1.3.5.

Similarly, we can represent all comments for the right-sided bi-ordinal

Hilfer derivative D
(α,β)µ
b− f.

The Laplace transform of the left-sided bi-ordinal Hilfer’s fractional

derivative can be presented by

L{D(α,β)µ
0+ f(t)} = sβ+µ(α−β)L{f(t)}−

−sµ(α−n)
n−1∑
k=0

sn−k−1

(
d

dt

)k
I
(1−µ)(n−β)
0+ f(0+),

(1.3.6)

where the Laplace transform of a function f(t) is defined by

L{f}(s) :=
∫ ∞

0

e−stf(t)dt.

Now let us consider the following problem intended of finding the solution

of the following equation

aD
(α,β)µ
t u(t) + bu(t) = f(t), (1.3.7)

which satisfies the weighted initial condition

lim
t→0+

I
(1−µ)(1−β)
0+ u(t) = u0. (1.3.8)

Where f(t) is a given source function 0 < α, β ≤ 1, 0 ≤ µ ≤ 1 and a, b, u0 ∈ R.

This type of problem was considered by R.Hilfer [48] for the first time

and in [49] authors developed it using the operational method for solving the
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1.3. Fractional differential operators

general equation with higher order and presented the spaces of the solution and

given functions. The following lemma is an analogy of the result given in [49],

[18].

Lemma 1.3.16. If f ∈ C1−γ[0, T ], then the solution u ∈ C1−γ[0, T ] of (1.3.7)-

(1.3.8) can be found uniquely as follows

u(t) = u0t
γ−1Eδ,γ

(
− b
a
tδ
)
+

1

a

t∫
0

(t− s)δ−1Eδ,δ

[
− b
a
(t− s)δ

]
f(s)ds, (1.3.9)

where δ = β + µ(α− β), γ = β + µ(1− β).

1.3.3 Regularized Caputo-like counterpart of the hyper-Bessel frac-

tional differential operator

Definition 1.3.17. The Erdelyi-Kober (E-K) fractional integral of a function

f(t) ∈ Cµ µ ≥ −β(γ + 1) with arbitrary parameters δ > 0, γ ∈ R and β > 0 is

defined as ([68])

Iγ,δβ;a+f(t) =
t−β(γ+δ)

Γ(δ)

t∫
a

(tβ − τβ)δ−1τβγf(τ)d(τβ),

which can be reduced up to a weight to Iqa+f(t) (Riemann-Liouville fractional

integral) at γ = 0 and β = 1, and Erdelyi-Kober fractional derivative of f(t) ∈

C
(n)
µ for n− 1 < δ ≤ n, n ∈ N is defined by

Dγ,δ
β,a+f(t) =

n∏
j=1

(
γ + j +

t

β

d

dt

)(
Iγ+δ,n−δβ,a+ f(t)

)
,

where C
(n)
µ is the weighted space of continuous functions defined in 1.2.1.

In 1965, by Soveit mathematicians, Ditkin and Prudnikov, the follow-

ing operator was considered and investigated in [25] (as a collection of papers

published since 1962)

DL :=
d

dt
t
d

dt
. (1.3.10)
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1.3. Fractional differential operators

For the information, we refer that, [22] Dattolli and Ricci, also considered

the so-called Laguerre derivative operator later in 2003 as,

DnL :=
d

dt
t...

d

dt
t
d

dt
t
d

dt︸ ︷︷ ︸
n+1 derivatives

, (1.3.11)

which (1.3.10) can be determined as a particular case when n = 1.

However, I. Dimovski [23], earlier in 1966, introduced the hyper-Bessel

differential operator of higher (integer) order m ≥ 1

B := tα0
d

dt
tα1

d

dt
tα2...

d

dt
tαm−1

d

dt
tαm, t > 0 (1.3.12)

with β = m−(α0+α1+ ...+αm) > 0 and Laguerre differential operator (1.3.11)

is only a special case of the so-called hyper-Bessel differential operators (1.3.12).

This can be seen as a generalization of Bessel differential operator Bν of order

m = 2 when α0 = ν ′ − 1, α1 = −2ν ′ + 1, α2 = ν ′; ν ′ = ±ν.

Dimoski developed operational calculus for the corresponding linear right

inverse operator L of (1.3.12), such that BL = I, where L is a hyper-Bessel inte-

gral operator, I is identity operator. Later, by using operational calculus he also

proposed fractional powers Bθ as a convolution products [24]. Using these frac-

tional powers, further represented by integral operators of Riemann-Liouville

and Erdelyi-Kober type, Kiryakova introduced the theory of the operators of

the generalized fractional calculus. For more details on the theory of the hyper-

Bessel operators and its applications, see Kiryakova [68], Ch.3 and references

therein.

Moreover, in [68], as well as, Kiyakova presented fractional multi-order

analogues of the hyper-Bessel operators (1.3.12) identified as particular cases

of the generalized fractional derivatives of multi-order δ = (δ1, ..., δm)

D = tα0

(
d

dt

)δ1
tα1

(
d

dt

)δ2
tα2...

(
d

dt

)δm−1

tαm−1

(
d

dt

)δm
tαm
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In 2013, the fractional order version of (1.3.11) was analyzed by Garra

and Polito in [38]
dν

dtν
tν...

dν

dtν
tν
dν

dtν
tν
dν

dtν
tν︸ ︷︷ ︸

n+1 derivatives

as a hyper-Bessel type operator, where
dν

dtν
tν stands for the Caputo fractional

derivative.

In [39], Roberto Garra et.al. considered a particular operator that is suit-

able to generalize the standard process of relaxation considering both memory

effects of power law type and time variability of the characteristic coefficient.

They applied the McBride-Lamb theory of the fractional powers of Bessel-type

operators and as a result, they obtained an explicit representation of the frac-

tional order operator in terms of Erdelyi-Kober and Hadamard integrals.

Definition 1.3.18. A particular hyper-Bessel operator of order 0 < α ≤ 1

identified in terms of E-K integral or derivative can be represented as follows

(
tθ
d

dt

)α
f(t) =

(1− θ)αt−α(1−θ)I0,−α1−θ f(t), if θ < 1,

(θ − 1)αI−1,−α
1−θ t(1−θ)αf(t), if θ > 1.

(1.3.13)

We note that Iγ,−αβ := Dγ−α,α
β is the interpretation of E-K integral for

negative order such that

Iγ,−αβ := (γ − α + 1)Iγ,1−αβ f(t) +
1

β
Iγ,1−αβ

(
t
d

dt
f(t)

)
.

The operator (1.3.13) coincides with the Riemann-Liouville fractional

derivative when θ = 0.

When θ = 1 the explicit form of the operator

(
t
d

dt

)α
comes from the

theory of fractional powers of operators such that(
t
d

dt

)α
f(t) = δ

(
J 1−α
t+0

f
)
(t), 0 < α < 1, (1.3.14)
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1.3. Fractional differential operators

where δ = t
d

dt
and

(
J 1−α
t+0

f
)
(t) =

1

Γ(1− α)

t∫
t0

(
ln
x

u

)−α
f(u)

du

u
, t0 ≥ 0

is the Hadamard fractional integral of order 1− α.

Definition 1.3.19. A regularized Caputo-like counterpart of the operator

(1.3.13) is defined for θ < 1 in terms of E-K fractional order operator such

that

C

(
tθ
d

dt

)α
f(t) = (1− θ)αt−α(1−θ)I0,−α1−θ [f(t)− f(0)] (1.3.15)

or in terms of the hyper-Bessel differential operator

C

(
tθ
d

dt

)α
f(t) =

(
tθ
d

dt

)α
f(t)− f(0)t−α(1−θ)

(1− θ)−αΓ(1− α)
, (1.3.16)

where f(0) is the initial condition.

Considering above notations a regularized Caputo-like counterpart of the

hyper-Bessel fractional differential operator can be written briefly for θ < 1 and

α ∈ (0, 1) as

C

(
tθ
d

dt

)α
f(t) = pαt−pαD−α,α

p f(t)− f(0)pαt−pα

Γ(1− α)
, (1.3.17)

where p = 1− θ.

Theorem 1.3.20. [5] If f(t) ∈ Cµ[0,∞), then the non-homogeneous fractional

differential equation

C

(
tθ
d

dt

)α
u(t) = −λu(t) + f(t), α ∈ (0, 1), θ < 1 (1.3.18)

satisfying the initial condition u(0) = u0 for t > 0, has a unique solution
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1.4. Important properties of the Mittag-Leffler function

represented by

u(t) = u0Eα,1(λ
∗tpα) +

1

pαΓ(α)

t∫
0

(tp − xp)α−1 f(x)d(xp)+

+
λ∗

pα

t∫
0

(tp − xp)2α−1Eα,2α [λ
∗ (tp − xp)α] f(x)d(xp),

(1.3.19)

where p = 1− θ and λ∗ = − λ
pα .

Remark 1.3.21. The solution (1.3.19) also can be written as follows

u(t) = u0Eα,1(λ
∗tpα)+

+
1

pα

t∫
0

(tp − xp)α−1Eα,α [λ
∗ (tp − xp)α] f(x)d(xp). (1.3.20)

1.4 Important properties of the Mittag-Leffler function

Since the introduction of the Mittag-Leffler function by Swedish Mathematician

Magnus Gustaf Mittag-Leffler in connection with methods for summation of

divergent series, many applications of this function or other functions in this

type have been revealed and investigated. The two parameter Mittag-Leffler

(M-L) function is an entire function and given by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β ∈ R.

In the sequel lemmas, we present an important properties of Mittag-Leffler

type functions.

Lemma 1.4.1. (see [85]) Let α < 2, β ∈ R and πα
2 < µ < min{π, πα}. Then

the following estimate holds true

|Eα,β(z)| ≤
M

1 + |z|
, µ ≤ |argz| ≤ π, |z| ≥ 0.
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1.4. Important properties of the Mittag-Leffler function

Here and in the rest of the paper, M is a positive constant.

Lemma 1.4.2. [17] For every α ∈ (0, 1], β > α and x ≥ 0 one has

1

1 + Γ(β−α)
Γ(β) x

≤ Γ(β)Eα,β(−x) ≤
1

1 + Γ(β)
Γ(β+α)x

.

The Laplace transform of the Mittag-Leffler function is given in the fol-

lowing lemma.

Lemma 1.4.3. [66] For any α > 0, β > 0 and λ ∈ C, we have

L{tβ−1Eα,β(λt
α)} =

sα−β

sα − λ
, (Re(s) >| λ |1/α).

Lemma 1.4.4. [66] If α > 0 and β ∈ C, then the following recurrence formula

holds:

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z).

We also remind that the fractional integration of the Mittag-Leffler func-

tions which will be used in the sequel:

1

Γ(γ)

t∫
0

(t−z)γ−1Eα,β(λz
α)zβ−1dz = tβ+γ−1Eα,β+γ(λt

α), β > 0, γ > 0. (1.4.1)

In 1969, the Mittag-Leffler function was generalized by Indian mathe-

matician Tilak Raj Prabhakar called three parameter Mittag-Leffler function

or Prabhakar function as follows [90]

Eγ
α,β(z) :=

∞∑
n=0

(γ)n zn

n!Γ(αn+ β)
, Re(α) > 0, Re(α) > 0, γ > 0,

where (γ)n = γ(γ+1)...(γ+n−1) is Pochhammer’s symbol. When γ = 1, Prab-

hakar function becomes into two parameter Mittag-Leffler function E1
α,β(z) =

Eα,β(z) and it is possible to write the Prabhakar function, when γ = 2, 3, in

terms of the two-parameter Mittag-Leffler function as follows:

E2
α,β(z) =

1

α

[
Eα,β−1(z) + (1− β + α)Eα,β(z)

]
,
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1.4. Important properties of the Mittag-Leffler function

E3
α,β(z) =

1

2α2

[
Eα,β−2(z) + (1−α)Eα,β−1(z) + (1− β +2α)(1− β +α)Eα,β(z)

]
.

Later, we use the properties of a Wright-type function studied by A. Pskhu

[86], defined as

eµ,δα,β(z) =
∞∑
n=0

zn

Γ(αn+ µ)Γ(δ − βn)
, α > 0, α > β.

Mittag-Leffler function can be determined by Wright-type function as a

special case Eα,β(z) = eβ,1α,0(z). So, we can record some results of Mittag-Leffler

function which can be reduced from the properties of Wright-type function.

Lemma 1.4.5. [86] If π ≥ |argz| > πα
2 + ε, ε > 0, then the following relations

are valid for z → ∞:

lim
|z|→∞

Eα,β(z) = 0,

lim
|z|→∞

zEα,β(z) = − 1

Γ(β − α)
.
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Chapter 2

Solvability of boundary value problems

for mixed equations involving

hyper-Bessel fractional differential

operator

Studying mixed-type equations is one of the well-developed parts of the con-

temporary theory of partial differential equations (PDEs). Especially, mixed

PDEs play an important role in the theory of transonic flow, and they arise

in particular boundary value problems known as the Tricomi and Frankl prob-

lems. Origins of these researches date back to the beginning of the last century

when the Tricomi introduced the following equation as it is of the elliptic and

hyperbolic type according to sign of the coefficient y:

yuxx + uyy = 0 (2.0.1)

The Tricomi’s research [111] gave a rise to the theory of PDEs of mixed

type with certain boundary conditions. Transonic flows involve a transition

from the subsonic to the supersonic region via the sonic curve. As a result,

transonic flows are very interesting phenomena that appear in aerodynamics

and hydrodynamics.
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However, we must admit that the most fundamental results on mixed type

equations with their applications appeared in Chaplygin’s work [20] in 1904.

He stated that the study of a mixed type equation known as the Chaplygin

equation is intimately related to the science of gas flow which is more general

than Tricomi’s equation. This equation describes the two-dimensional adiabatic

potential flow of a perfect gas as well.

Gellerstedt generalized [43] the Tricomi problem in 1935 by substituting

a power of y for the coefficient y in the equation (2.0.1) i.e,

sgn(y)|y|muxx + uyy = 0, m > 0. (2.0.2)

In 1945, Frankl investigated the Tricomi and Chaplygin problems which

is related to the study of gas flow with nearly sonic speeds [34].

Some applications of boundary-value problems for mixed parabolic-

hyperbolic type equations appeared in practical problems [114], [42], [31]. Later,

many kind of problems, including nonlocal boundary value problems were stud-

ied by many authors (see, for instance monographs [27], [81]). Interesting ap-

plication of a boundary value problems with integral conjugation condition for

mixed type equations was also noticed in [102]. Different studies devoted to the

boundary value problems for mixed elliptic-hyperbolic [82] and hyperbolic [26]

type equations were published. Several local and nonlocal boundary problems

with integral conjugation conditions for parabolic-hyperbolic type equations

with one or two lines of type changing were studied in [61]. In these prob-

lems, form of conjugation condition depends on equation in a hyperbolic part

of considered mixed type equations.

In next works, authors investigated more general equations, domains and

conjugation conditions (not depending on certain form of equation). For in-

stance, fractional diffusion equation and wave equation were widely investigated

in different domains in [60], [2], [64], [62], [28], [51], [13]. We note recent work
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2.1. An analogue of the Tricomi problem for a mixed PDE with hyper-Bessel FDO

[59], where the Tricomi type problem with integral conjugation conditions for a

mixed type (PDEs) with sub-diffusion equation involving Hilfer fractional dif-

ferential operator has been studied. Frankl-type problems for mixed hyperbolic-

parabolic type equations were studied in [71], [53], [87] which are considered a

good example for non-local problems.

In the following sections we investigate analogues of the Tricomi and

Frankl type problems for mixed equations.

This chapter is based on the articles [119] and [120], which have been al-

ready published in Bulletin of the Institute of Mathematics and Montes Taurus

Journal of Pure and Applied Mathematics, respectively.

2.1 An analogue of the Tricomi problem for a mixed type

equation with the hyper-Bessel fractional differential

operator

In this section, we are interested in studying boundary value problem with

integral form conjugation condition in a mixed domain consisted of character-

istic triangle and rectangle, for a mixed type partial differential equation with

the regularized Caputo-like counterpart of hyper-Bessel fractional differential

operator.

Formulation of a problem

In a domain Ω = Ω1∪Ω2∪AB let us consider the following mixed type equation

0 =


C

(
tθ
∂

∂t

)α
u (x, t)− uxx (x, t) , t > 0

utt (x, t)− uxx (x, t) , t < 0

(2.1.1)
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2.1. An analogue of the Tricomi problem for a mixed PDE with hyper-Bessel FDO

where α, θ, T are real numbers such that 0 < α < 1, θ < 1, T > 0 conditions,

Ω1 = {(x, t) : 0 < x < 1, 0 < t < T} , AB = {(x, t) : t = 0, 0 < x < 1} ,

Ω2 =

{
(x, t) : −t < x < t+ 1,−1

2
< t < 0

}
,

C
(
tθ ∂∂t
)α
f (t) stands for the regularized Caputo-like counterpart of the hyper-

Bessel fractional differential operator of order α (0 < α < 1) defined in Defini-

tion 1.3.19.

Problem T. To find a function u (x, t) which is continuous in Ω, its

hyper-Bessel derivative is continuous in Ω1 and it has continuous second order

partial derivatives in Ω2, and it satisfies Eq.(2.1.1) in Ω together with boundary

conditions

u (0, t) = 0, u (1, t) = 0, 0 ⩽ t ⩽ T, (2.1.2)

u (x/2,−x/2) = ψ (x) , 0 ⩽ x ⩽ 1, (2.1.3)

conjugation condition on AB

lim
t→+0

t1−(1−θ)αut (x, t) = γ1ut (x,−0)+

+γ2

1∫
0

ut (z,−0)P (x, z) dz, 0 < x < 1,
(2.1.4)

where γ1, γ2 ∈ R, P (x, t) is given function.

The following statements provide the unique solvability of the Problem

T.

Theorem 2.1.1. If γ2 ⩾ 0,

∂

∂z
P (x, z) = P1 (x)P1 (z) , (2.1.5)

are fulfilled, then Problem T has a unique solution.
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2.1. An analogue of the Tricomi problem for a mixed PDE with hyper-Bessel FDO

Theorem 2.1.2. Let all conditions of the Theorem 2.1.1 be valid. If ψ(x) ∈

C1[0, 1] and P (x, z) has continuous partial derivatives in [0, 1]×[0, 1], then there

exist a unique solution of the Problem T represented as

u (x, t) = 2Θ (t)

1∫
0

F (ξ) +

1∫
0

F (z)R ( ξ, z) dz

×
×

∞∑
k=1

Eα, 1

(
− (kπ)2

(1− θ)2
t(1−θ)α

)
sin (kπξ) sin (kπx) dξ+

+
Θ(−t)

2

F (x+ t) + F (x− t)

1∫
0

F (ξ) [R (x+ t, ξ) +R (x− t, ξ)] dξ+

+

x+t∫
x−t

F ′′ (z) +

1∫
0

F (ξ)
∂2R ( z, ξ)

∂z2
dξ − 2ψ′ (z)

, dz
 (2.1.6)

where A = γ1Γ (α) (1− θ)α, Θ(t) = 1 for t > 0 and Θ(t) = 0 for t < 0,

R (x, ξ) is the resolvent-kernel of

K (x, ξ) = −Aγ2

1∫
0

G0 (x, ξ)
∂P (ξ, z)

∂z
dz, (2.1.7)

F (x) = −2Aγ1

1∫
0

G0 (x, ξ)ψ
′ (ξ) dξ

− 2Aγ2

1∫
0

G0 (x, ξ) dξ

1∫
0

ψ′ (ξ)P (ξ, z) dz, (2.1.8)

G0 (x, ξ) =
1

A
[
eAx − eA(x−1)

]

(
1− eAξ

) (
1− eA(x−1)

)
, 0 ⩽ ξ ⩽ x,(

1− eAx
) (

1− eA(ξ−1)
)
, x ⩽ ξ ⩽ 1.

(2.1.9)

Proof of existence result. First, we prove Theorem 2.1.2.

Let us introduce a notation

τ+ (x) = u (x, +0) , 0 ⩽ x ⩽ 1. (2.1.10)
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2.1. An analogue of the Tricomi problem for a mixed PDE with hyper-Bessel FDO

Solution of the Eq.(2.1.1) in Ω1 which satisfies conditions (2.1.2), (2.1.10) can

be written as follows [5]:

u (x, t) = 2

1∫
0

τ+ (ξ)
∞∑
k=1

Eα,1

[
− (kπ)2

(1− θ)2
t(1−θ)α

]
×

× sin (kπξ) sin (kπx) dξ.

(2.1.11)

Using representation (2.1.11), we evaluate t1−(1−θ)αut (x, t):

t1−(1−θ)αut (x, t) =
∞∑
k=1

(
− (kπ)2

(1− θ)α

)
τ+k · Eα,α

(
− (kπ)2

(1− θ)α
t(1−θ)α

)
sin kπx,

where τ+k = 2
1∫
0

τ+ (ξ) sin kπξ dξ.

We introduce another notation, namely

ν+ (x) = lim
t→+0

t1−(1−θ)αut (x, t) , 0 < x < 1. (2.1.12)

Considering above-given evaluations, from (2.1.11) we obtain the follow-

ing functional relation on AB deduced from Ω1 as t→ +0:

ν+ (x) =
(1− θ)−α

Γ (α)
τ+

′′
(x) , 0 < x < 1. (2.1.13)

Here we have used 2

1∫
0

τ+ (ξ) sin kπξ dξ = − 2

(kπ)2

1∫
0

τ+
′′
(ξ) sin kπξ dξ, which

is true due to τ+ (0) = τ+ (1) = 0 (see condition (2.1.2) and notation (2.1.10)).

Now we will establish another functional relation on AB which will be

reduced from Ω2. For this aim, we use a solution of the following Cauchy

problem: 
uxx − utt = 0,

u (x, −0) = τ− (x) , 0 < x < 1,

ut (x, −0) = ν− (x) , 0 < x < 1,
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2.1. An analogue of the Tricomi problem for a mixed PDE with hyper-Bessel FDO

which has a form [107]

u (x, t) =
1

2

τ− (x+ t) + τ− (x− t) +

x+t∫
x−t

ν− (z) dz

 . (2.1.14)

We substitute (2.1.14) into (2.1.3) and deduce

ν− (x) = τ−
′
(x)− 2ψ′ (x) , 0 < x < 1. (2.1.15)

Considering conjugation condition (2.1.4), from functional relations

(2.1.12) and (2.1.15) we get

τ+
′′
(x)− Aτ+

′
(x) = F0 (x) , (2.1.16)

where A = γ1Γ (α) (1− θ)α,

F0 (x) = Γ (α) (1− θ)α

γ2 1∫
0.

τ+
′
(z)P (x, z) dz−

−2ψ′ (x)− 2γ2

1∫
0

ψ′ (z)P (x, z) dz

 .
(2.1.17)

Boundary conditions (2.1.2) yield

τ+ (0) = 0, τ+ (1) = 0. (2.1.18)

Solution of (2.1.16),(2.1.18) can be written as [27]

τ+ (x) =

1∫
0

G0 (x, ξ)F0 (ξ) dξ, (2.1.19)

where

G0 (x, ξ) =
1

A
[
eAx − eA(x−1)

]

(
1− eAξ

) (
1− eA(x−1)

)
, 0 ⩽ ξ ⩽ x,(

1− eAx
) (

1− eA(ξ−1)
)
, x ⩽ ξ ⩽ 1.
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2.1. An analogue of the Tricomi problem for a mixed PDE with hyper-Bessel FDO

Substituting (2.1.17) into (2.1.19), after integration by parts, we will get

τ+ (x)−
1∫

0

τ+ (ξ)K (x, ξ) dξ = F (x) , 0 ⩽ x ⩽ 1, (2.1.20)

where K (x, ξ), F (x) are defined by formulas (2.1.7), (2.1.8), respectively. Due

to (2.1.9) K (x, ξ) is continuous and if F (x) is continuously differentiable (for

this we assume that ψ (x) ∈ C1[0, 1], P (x, z) ∈ C1 ([0, 1]× [0, 1])), hence the

solution of the second kind Fredholm integral equation (2.1.20) can be repre-

sented via resolvent-kernel [112]:

τ+ (x) = F (x) +

1∫
0

F (ξ)R (x, ξ) dξ, (2.1.21)

where R (x, ξ) is a resolvent-kernel of K (x, ξ) .

This will complete the proof of the Theorem 2.1.2. □

Proof of uniqueness of the result. Now we prove Theorem 2.1.1,

which states a uniqueness of the obtained solution.

For this aim, we multiply equality (2.1.13) by τ+ (x) and integrate along

AB:
1∫

0

τ+ (x) ν+ (x) dx =
1

Γ (α) (1− θ)α

1∫
0

τ+ (x) τ+
′′
(x) dx.

Considering

1∫
0

τ+ (x) τ+
′′
(x) dx = −

1∫
0

[
τ+

′
(x)
]2
dx, we deduce

1∫
0

τ+(x)ν+(x)dx+
1

Γ (α) (1− θ)α

1∫
0

[
τ+

′
(x)
]2
dx = 0. (2.1.22)

Let us first consider the following integral

I =

1∫
0

τ+ (x) ν+ (x) dx. (2.1.23)
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

Considering (2.1.4) and (2.1.15) at ψ (x) ≡ 0, after integration by parts

we get

I = γ2

1∫
0

τ+ (x) dx

1∫
0

τ+ (z)
∂

∂z
P (x, z) dz. (2.1.24)

Suppose that condition (2.1.5) is valid, then from (2.1.24) it follows that

I = γ2

 1∫
0

τ+ (x)P1 (x) dx

2

. (2.1.25)

If we suppose that γ2 ⩾ 0, from (2.1.25) we will get I ⩾ 0.

Since Γ (α) > 0 for all α > 0, and (1− θ)α > 0 is true for all θ < 1, then

from (2.1.22) we will have τ+ (x) ≡ 0. Further, considering solution of the first

BVP for Eq.(2.1.1) in Ω1, we will get u (x, t) ≡ 0 in Ω̄1. Due to the continuity

of u (x, t) in Ω̄ and (2.1.13)-(2.1.14), one can easily deduce that u (x, t) ≡ 0 in

Ω̄.

Finally, based on (2.1.11), (2.1.13)-(2.1.14) and (2.1.21), we can represent

the solution of the problem by formula (2.1.6).

Theorem 2.1.1 is proved. □

Remark 2.1.3. We note that set of functions P (x, z), satisfying condition

(2.1.5) is not empty. For instance, P (x, z) = exp(x + z) or P (x, z) =

− sinx cos z.

2.2 Frankl-type problem for a mixed equation associated

with the hyper-Bessel fractional differential operator

In this section, we are concerned with studying unique solvability of a Frankl-

type problem for partial differential equation of mixed PDE involving sub-

diffusion equation with the hyper-Bessel fractional derivative and the wave

equation. We have used the method of energy integrals for proving uniqueness
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

of the solution and also method of integral equations for showing the existence

of the solution of the problem. We have to note that obtained result can be

used in mathematical models of the gas movement in a porous medium. The

usage of special fractional derivative can be justified by memory effect. For

details we refer E.Karimov’s DSc thesis [55].

Let Ω = Ω1 ∪ Ω2 ∪ AB be a simple-connected domain, where

AB = {(x, t) : t = 0, 0 < x < 1}, Ω1 = {(x, t) : 0 < t < 1, 0 < x < 1},

Ω2 = {(x, t) : −t < x < t+ 1, −1/2 < t < 0}.

Problem F. To find a function u (x, t), which is

1) u (x, t) ∈ C
(
Ω
)
∩C1

(
Ω2

)
∩C2 (Ω2) ,

C(tθ ∂∂t)
αu ∈ C (Ω1) , uxx ∈ C(Ω1);

2) satisfies equation

0 =

 uxx (x, t)− C(tθ ∂∂t)
αu (x, t) , (x, t) ∈ Ω1,

uxx (x, t)− utt (x, t) , (x, t) ∈ Ω2;
(2.2.1)

3) satisfies non-local conditions

a1 (z)u (0, z) + b1 (z)u (z/2,−z/2) = c1 (z) , 0 ≤ z ≤ 1, (2.2.2)

a2 (z)u (1, z) + b2 (z)u ((z + 1)/2, (z − 1)/2) = c2 (z) , 0 ≤ z ≤ 1, (2.2.3)

a3 (z)u (0, z) + b3 (z)u (1, z) = c3 (z) , 0 ≤ z ≤ 1; (2.2.4)

4) u (x, t) satisfies the following conjugating condition

lim
t→+0

t1−α(1−θ)ut (x, t) = lim
t→−0

ut (x, t) . (2.2.5)

Here 0 < α < 1, θ < 1, ai (z) , bi (z) , ci (z)
(
i = 1, 3

)
are given continuous

functions such that

a21 (z) + a22 (z) ̸= 0, a21 (z) + a23 (z) ̸= 0, b21 (z) + b22 (z) ̸= 0,

b21 (z) + b23 (z) ̸= 0, a2j (z) + b2j (z) + c2j (z) ̸= 0, j = 1, 2,

It is known that Frankl problem [35] has a specific nonlocal condition

which connects parts of boundary of the mixed domain.
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

The present investigation’s distinguishing feature is the utilization of non-

local Frankl-type conditions. As a result of these nonlocal conditions, which

correlate values of the sought function on different parts of the boundary of the

considered mixed domain, numerous well phrased local and nonlocal problems

can be obtained, which can be analyzed using the same method. On the line

of type-changing, using the integral form gluing condition has both a mathe-

matical and an applied aspect. We must keep in mind that certain conjugating

conditions have an impact on the solvability of the problem in question; for

example, the problem could be reduced to the Fredholm or Volterra integral

equations by using the proper conjugating condition on the type-changing line.

For the investigation, we used well-known approaches, although with a

few tweaks. Finding the key functional relations on the type-changing line, in

particular, necessitates a certain order of stages as well as an analogous reduc-

tion of the problem to the somewhat different second kind Fredholm integral

equation.

The main result we formulate as the following statement:

Theorem 2.2.1. If d′2(z) > 0, d2 ̸= 1 and ai (z) , bi (z) , ci (z) ∈ C (0, 1) ∩

C1 [0, 1], such that ai(z) ̸= 0, bi(z) ̸= 0, z ∈ [0, 1], a1(0) ̸= −b1(0), then a

unique solution of the Problem F exists, where

d2 (z) =
a1 (z) b2 (z) b3 (z)

a2 (z) a3 (z) b1 (z)
.

Proof. First, we prove the uniqueness of the solution.

The uniqueness of a solution.

We introduce the following notations and assumptions:

u (x,±0) = τ (x) , x ∈ [0, 1], τ(x) ∈ C[0, 1] ∩ C2(0, 1), (2.2.6)
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

lim
t→−0

ut (x, t) = ν2 (x) , x ∈ (0, 1), ν2(x) ∈ C1(0, 1) ∩ L1(0, 1). (2.2.7)

Solutions of the Cauchy problem for the equation (2.2.1) in Ω2 can be

represented by the D’Alembert’s formula

u (x, t) =
1

2

τ (x+ t) + τ (x− t) +

x+t∫
x−t

ν2 (z) dz

 . (2.2.8)

We assume that ai, bi ̸= 0
(
i = 1, 3

)
and from (2.2.2) and (2.2.3), we find

that

u (0, z) =
c1 (z)− b1 (z)ψ (z)

a1 (z)
= g1 (z) , (2.2.9)

u (1, z) =
c2 (z)− b2 (z)φ (z)

a2 (z)
= g2 (z) , (2.2.10)

where

u

(
z + 1

2
,
z − 1

2

)
= φ (z) , 0 ≤ z ≤ 1, (2.2.11)

u

(
z

2
,
−z
2

)
= ψ (z) , 0 ≤ z ≤ 1. (2.2.12)

We note that functions g1 (z), g2 (z), ψ(z), φ(z) are not known yet.

By substituting the solution (2.2.8) into the condition (2.2.12) and differ-

entiating once, we can obtain the first functional relation in Ω2 as

ν2(x) = τ ′(x)− 2ψ′(x) (2.2.13)

We get the following result after substituting (2.2.9) and (2.2.10) into

(2.2.4) and doing some evaluations:

ψ(x) = d1(x)− d2(x)φ(x), 0 ≤ x ≤ 1, (2.2.14)

where

d1 (z) =
a2 (z) a3 (z) c1 (z)− a1 (z) a2 (z) c3 (z) + a1 (z) b3 (z) c2 (z)

a2 (z) a3 (z) b1 (z)

and

d2 (z) =
a1 (z) b2 (z) b3 (z)

a2 (z) a3 (z) b1 (z)
.
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

Once again substituting the solution (2.2.8) into (2.2.11) and differentiating

yield that

ν2(x) = −τ ′(x) + 2φ(x), 0 < x < 1. (2.2.15)

From (2.2.13) and (2.2.15) one can find

τ ′(x) = φ′(x) + ψ′(x), 0 < x < 1

We get the following result after integrating the last equality from 0 to x:

τ(x)− τ(0) = φ(x)− φ(0) + ψ(x)− ψ(0).

Assuming that a1(0) + b1(0) ̸= 0 and considering (2.2.9), (2.2.10) and

(2.2.14) yield that

A1 = τ (0) =
c1 (0)

a1 (0) + b1 (0)
,

A2 = τ (1) =
c2 (0)

a2 (0)
− b2 (0)

a2 (0)

d1 (0)− A1

d2 (0)
.

(2.2.16)

Consequently,

τ(x) = φ(x) + ψ(x)− d1(0)− A1

d2(0)
. (2.2.17)

Let us assume that a1(z)b2(z)c3(z) ̸= a2(z)a3(z)b1(z) or d2(z) ̸= 1, from

the last equality we obtain

φ(z) =
τ(z)− d1(z)− A1−d1(0)

d2(0)

1− d2(z)
, 0 ≤ z ≤ 1. (2.2.18)

In short, by using (2.2.14) and (2.2.18) we can write main functional

relation in Ω2 by doing some evaluations

ν2 (z) = σ (z) τ ′ (z) + σ′ (z) τ (z) + e (z) , 0 < z < 1, (2.2.19)

where

e (z) =
d2

′ (z)

1− d2 (z)

[
d1 (0)− A1

d2 (0)
− d1 (z)

]
− 2d1

′ (z)

1− d2 (z)
+
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

+
d2

′ (z) (1 + d2 (z))

[1− d2 (z)]
2

[
d1 (z)−

d1 (0)− A1

d2 (0)

]
.

For obtaining main functional relation in Ω1, we need to write the solution

of (2.2.1) satisfied (2.2.6), (2.2.9), (2.2.10) conditions. In this case, we consid-

ered u (x, t) = ω(x, t) + v(x, t), in other words ω(x, t) is a auxiliary function

defined by

ω(x, t) = g1(t) + x[g2(t)− g1(t)],

satisfies the boundary conditions (2.2.9) and (2.2.10) and v(x, t) is the solution

of the following problem

(B)


vxx (x, t)− C(tθ ∂∂t)

αv (x, t) = q(x, t), (x, t) ∈ Ω1,

v(x, 0) = τ0(x), x ∈ [0, 1],

v(0, t) = v(1, t) = 0, t ∈ [0, 1],

respectively, where τ0(x) = τ(x)− ω(x, 0) and q(x, t) = C(tθ ∂∂t)
αω (x, t).

It is obvious that from (2.2.16) and considering the boundary conditions

(2.2.9) and (2.2.10) we have ω(x, 0) = A1 + x(A2 − A1).

We note that the problem (B) was investigated in [5] and the existence

of the solution was proved.

Considering above problems we can write the solution of the problem

(2.2.1), (2.2.6), (2.2.9), (2.2.10) as follows:

u(x, t) =
∞∑
k=1

[
τ0k Eα

(
−(kπ)2

pα
tpα
)
− G̃k(t)

]
sin(kπx) + ω(x, t) (2.2.20)

where p = 1− θ and

G̃k(t) =
1

pα

t∫
0

(tp − sp)α−1Eα,α [λ
∗ (tp − sp)α] qk(s)d(s

p),

qk(t) =
1

kπ
g1(t) + (−1)k

1

kπ
g2(t),
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

τ0k = 2

1∫
0

τ0(x) sin(kπx)dx.

We introduce another notation:

ν1(x) = lim
t→+0

t1−pαut (x, t) . (2.2.21)

Using representation (2.2.20), we evaluate t1−pαut(x, t):

t1−pαut(x, t) =
∞∑
k=1

[
τ0k

(
−(kπ)2

pα−1

)
Eα,α

(
−(kπ)2

pα
tαp
)
−

− t1−pαG̃′
k(t)

]
sin(kπx) + t1−pαω′

t(x, t).

Considering above evaluation, from 1 − pα > 0 we obtain the following

functional relation on AB deduced from Ω1 as t→ +0:

ν1(x) =
1

pαΓ(α)
τ ′′(x). (2.2.22)

Here, we have used 2
1∫
0

τ0(x) sin(kπx)dx = − 2
(kπ)2

1∫
0

τ ′′(x) sin(kπx)dx, which is

true due to τ0(0) = τ0(1) = 0.

Clearly, for showing the uniqueness of the solution of the considered prob-

lem, it is enough to prove that homogeneous problem has only trivial solution.

In this case, we will have homogeneous problem at

c1 (z) = c2 (z) = c3 (z) = 0.

Then, from (2.2.16) it follows that

τ (0) = τ (1) = 0. (2.2.23)

Also, it is comprehensible that e(x) = 0 when we consider homogeneous

problem.
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

We multiply equation (2.2.22) to the function τ(x) and integrate along

AB. Then, using integration by parts and equality (2.2.23), we get

1∫
0

[τ ′ (x)]
2
dx+ pαΓ (α)

1∫
0

τ (x) ν1 (x) dx = 0. (2.2.24)

Let us evaluate the sign of the integral below

Ĩ =

1∫
0

τ (x) ν1 (x) dx. (2.2.25)

If cj (z) ≡ 0,
(
j = 1, 3

)
and considering ν1(x) = ν2(x), (2.2.25) can be written

as follows:

Ĩ =

1∫
0

τ (x) ν2 (x) dx =

1∫
0

τ (x) [σ(x)τ ′(x) + σ′(x)τ(x)] dx =

= −1

2

1∫
0

σ(x)
d

dx
τ 2(x)dx =

1

2

1∫
0

[τ(x)]2 σ′(x)dx.

According to Theorem 2.2.1, σ′(x) > 0 hence, Ĩ ≥ 0. Then, by means of (2.2.24)

we find τ ′(x) = 0 or τ(x) = const.

Taking the homogeneous boundary conditions (2.2.23) into account, we

determine that τ(x) ≡ 0 at 0 ≤ x ≤ 1. From (2.2.19) and (2.2.22) we get

ν1(x) = ν2(x) ≡ 0. Then according to (2.2.8) one can see that u(x, t) ≡ 0 in

Ω2. Moreover, while considering homogeneous problem, it is straightforward to

find u(0, z) = u (1, z) = 0, or g1(z) = g2(z) = 0, 0 ≤ z ≤ 1. Then, from

(2.2.20) it is inferred that u(x, t) ≡ 0 in Ω2. Consequently, u(x, t) ≡ 0 in Ω,

which completes the proof of uniqueness of the solution of the main problem.
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

The proof of existence of the solution.

Consider the problem {(2.2.22), (2.2.16)}, i.e. τ ′′ (x) = pαΓ (α) ν1 (x) ,

τ (0) = A1, τ (1) = A2.

As a result of introducing and applying a notation

τ (x) = τ (x)− A1 − (A2 − A1)x, (2.2.26)

we get the following problem with homogeneous conditions τ ′′ (x) = pαΓ (α) ν1 (x) ,

τ (0) = 0, τ (1) = 0.
(2.2.27)

This problem can be solved using the method of Green’s functions. We write

the solution, considering some calculation process

τ (x) = pαΓ (α)

1∫
0

ν1 (ξ)G0 (x, ξ) dξ, (2.2.28)

where

G0 (x, ξ) =

 (ξ − 1)x, x < ξ,

(x− 1) ξ, ξ < x

is Green’s function of (2.2.27).

Considering the notation (2.2.26) and from (2.2.28), we get

τ (x) = A1 + (A2 − A1)x+ pαΓ (α)

1∫
0

ν1 (ξ)G0 (x, ξ) dξ. (2.2.29)

Now considering (2.2.5) and (2.2.19), after doing some evaluations, from (2.2.29)

we obtain the second kind Fredholm integral equation with respect to τ (x),

which is equivalent to the formulated Problem F in terms of existing the solution

τ (x)−
1∫

0

τ (ξ) K̃ (x, ξ) dξ = F̃ (x) , (2.2.30)
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2.2. Frankl-type problem for a mixed PDE with hyper-Bessel FDO

where

K̃ (x, ξ) = −(1− θ)αΓ(α)σ(ξ)
∂

∂ξ
G0(x, ξ),

F̃ (x) = A1 + (A2 − A1)x+ A1σ(0)x+ A2σ(1)(x− 1)+

+ (1− θ)αΓ(α)

1∫
0

e(ξ)G0(x, ξ)dξ.

If

ai (z) , bi (z) , ci (z) ∈ C [0, 1] ∩ C1 (0, 1) , i = 1, 2, 3, (2.2.31)

then the kernel and the right side of the integral equation (2.2.30) will be

continuous in their domain. Since equation (2.2.30) is equivalent to the Problem

F, then from the uniqueness of the problem, it follows that equation (2.2.30) is

uniquely solvable in the class of continuous functions.

Further, finding function ν2 (x) by formula (2.2.19), we find a solution

of the considered Problem F in the domain Ω2 as the solution of the Cauchy

problem by formula (2.2.8). Then, from (2.2.11), (2.2.12) φ (z) , ψ (z) are found

and this opens a way for finding unknown functions g1(z), g2(z). After that

we rewrite ω(x, t) and ϕ(x) with known functions. Finally, in the domain Ω1,

solution can be represented by the formula (2.2.20) problem for equation (2.2.1)

at t > 0. The proof of Theorem 2.2.1 is completed.

Example. Now we give exact values to given functions and parameters

in order to show the validation of the Theorem 2.2.1.

Let us say a1(z) = ez, a2(z) = 1, a3(z) = 1, b1(z) = 1, b2(z) = 2ez + 1,

b3(z) = e−z, c1(z) = 1, c2(z) = 0, c3(z) = −1 and α = 1
2 , θ =

3
4 .

From above values of given functions, we have d2(z) = 2ez+1 and one can

make sure that the conditions of Theorem 2.2.1 are fulfilled, i.e, σ(z) = −e−z−1

or d
dzσ(z) = e−z > 0.
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Conclusion of the Chapter 2

Conclusion of the Chapter 2

This Chapter consists of the results on unique solvability of the Tricomi and

Frankl type problems for mixed equation involving the regularized Caputo-like

counterpart of hyper-Bessel operator.

In the beginning of chapter 2 we have given the short introduction about

the applications and importance of studying problems for mixed type equations.

In section 2.1 we have studied the Tricomi type problem for the mixed

equation with the integral conjugation condition. The diffusion part involves

the regularized Caputo-like counterpart of the hyper-Bessel fractional differen-

tial operator which is considered in a rectangular domain while wave equation

is given in characteristic triangle. The theorems for the uniqueness and the

existence of the solution are proved. The method of energy integrals is used for

proving the uniqueness of the solution and existence of the results showed by

the reduction of the problem to the second kind Fredholm integral equation.

In section 2.2 the Frankl-type problem was at the center of investigation.

Our main aim was to show a unique solvability of the considered problem. In

[5] the solution was found for homogeneous boundary condition in Ω1 only.

Therefore, we needed to rewrite that solution for non-homogeneous boundary

conditions. First, we use them formally, then we will find them lately. The con-

sidered problem is equivalently reduced to the second kind Fredholm integral

equations. Therefore, a uniqueness of the problem we had to prove additionally.

For this aim we use the method of energy integrals. All in all, sufficient condi-

tions for given functions are presented in terms of uniqueness and existence of

the solution of the Frankl type problem in the domain Ω.

Practical value of these results can be estimated by possible application

in mathematical modeling of gas movement in a channel surrounded by porous

medium (see [55]).
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Chapter 3

Non-local boundary-value problems for

the mixed PDEs with the time

fractional differential operators

In this chapter we deal with studying the boundary value problems for mixed

differential equation consisted of sub-diffusion and fractional wave equation.

While the sub-diffusion equation is generated by time fractional regularized

Caputo-like counterpart of hyper-Bessel differential operator, the fractional

wave equation involves the bi-ordinal Hilfer fractional derivative in time. We

have to note that both fractional differential operators are generalization of

other popular operators such that Caputo, Riemann-Liouville and Hadamard

and hyper-Bessel operators. Sometimes they meet at some points of parameters

and orders of derivative. This also impact of improving the rate of importance

of these investigations.

The study of fractional order differential equations has been attracting

many scientists because of its adequate and interesting applications in modeling

of real-life problems related to several fields of science [36], [54]. Initial-value

problems (IVPs) and boundary-value problems (BVPs) for mixed equations

involving the Riemann-Liouville and Caputo derivatives attract most interest
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(see, for instance, [58], [9], [81]). Especially, studying IVPs and BVPs for the

sub-diffusion, fractional wave equations are well-studied (see also [67], [96], [57],

[115], [41], [56]).

We also note that in 1968, M. M. Dzhrbashyan and A. B. Nersesyan

introduced the following integral-differential operator [29]

Dσn
0xg(x) = I1−γn0x D

γn−1

0x ...Dγ1
0xD

γ0
0xg(x), n ∈ N, x > 0, (3.0.1)

which is more general than Hilfer’s operator. Here Iα0x andD
α
0x are the Riemann-

Liouville fractional integral and the Riemann-Liouville fractional derivative of

order α respectively (see Definition 1.3.1 and Definition 1.3.3), and σn ∈ (0, n]

is defined by

σn =
n∑
j=0

γj − 1 > 0, γj ∈ (0, 1].

There are some works [16], [3], related with this operator. New wave of investi-

gations involving this operator might appear due to the translation of original

work [29] in FCAA [30].

Considering the Remark 1.3.12, it is possible to show that Dzhrbashyan-

Nersesyan fractional differential operator (3.0.1) can be reduced up to the bi-

ordinal Hilfer’s fractional differential operator for n = 1, i.e.

Dσ1
0+g(t) = I1−γ10+ Dγ0

0+g(t).

The content of this chapter is based on the articles [122],[121] and [123],

which have been already published in the journals: Mathematical Methods in

the Applied Sciences, Uzbek Mathematical Journal and Fractional Differential

Calculus.
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3.1. Nonlocal problem for mixed PDE involving hyper-Bessel and bi-ordinal Hilfer’s FDOs

3.1 Solvability of the boundary-value problem for a

mixed equation involving hyper-Bessel fractional dif-

ferential operator and bi-ordinal Hilfer fractional

derivative

In this work, we investigate a boundary value problem for a mixed equation

involving the sub-diffusion equation with Caputo-like counterpart of a hyper-

Bessel fractional differential operator and the fractional wave equation with

Hilfer’s bi-ordinal derivative in a rectangular domain. The theorem on the

uniqueness and the existence of the solution has been proved. The main method

is based on separation variables which is applicable and convenient to write

solution explicitly rather than other methods.

In this section we present the new definitions and analogy results re-

lated to fractional hyper-Bessel differential operator and the generalized Hilfer

derivative which will be used in the sequel.

3.1.1 Caputo-like counterpart of the hyper-Bessel FDO with arbi-

trary starting point

Definition 3.1.1. Regularized Caputo-like counterpart of the hyper-Bessel frac-

tional differential operator for θ < 1, 0 < α ≤ 1 and t > a ≥ 0 is defined in

terms of the E-K fractional order operator

C
(
(tθ − aθ)

d

dt

)α
f(t) = (1− θ)αt−α(1−θ)D−α,α

1−θ,a+ (f(t)− f(a)) (3.1.1)

or in terms of the hyper-Bessel differential (R-L type) operator

C

(
(tθ − aθ)

d

dt

)α
f(t) =

(
(tθ− aθ)

d

dt

)α
f(t)−

f(a)
(
t(1−θ) − a(1−θ)

)−α
(1− θ)−αΓ(1− α)

, (3.1.2)
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3.1. Nonlocal problem for mixed PDE involving hyper-Bessel and bi-ordinal Hilfer’s FDOs

where (
(tθ − aθ)

d

dt

)α
f(t) =

(1− θ)αt−(1−θ)αI0,−α1−θ,a+f(t) if θ < 1,

(θ − 1)αt−(1−θ)αI−1,−α
1−θ,a+f(t) if θ > 1,

is a hyper-Bessel fractional differential operator.

From (2.1.3) for a = 0 we obtain the Definition 1.3.19 presented in Section

1.3 and also Caputo FDO is the particular case of Caputo-like counterpart

hyper-Bessel operator at θ = 0.

Considering the Definition 3.1.1 we present an analogy of theorem proved

in [5].

Theorem 3.1.2. Assume that the following conditions hold:

• τ ∈ C[0, 1] such that τ(0) = τ(1) = 0 and τ ′ ∈ L2(0, 1),

• f(·, t) ∈ C3[0, 1] and f(x, ·) ∈ Cµ[a, T ] such that

f(0, t) = f(π, t) = fxx(0, t) = fxx(1, t) = 0, and
∂4

∂x4
f(·, t) ∈ L1(0, 1).

Then, in Ω = {0 < x < 1, a < t < T}, the problem of finding the solution

of the equation

C
(
(tθ − aθ)

∂

∂t

)α
u(x, t)− uxx(x, t) = f(x, t),

satisfying the conditions

u(0, t) = 0, u(1, t) = 0, a ≤ t ≤ T,

u(x, a+) = τ(x), 0 ≤ x ≤ 1,

has a unique solution given by

u(x, t) =
∞∑
k=1

[
τkEα,1

(
− (kπ)2

pα
(tp − ap)α

)
+Gk(t)

]
sin(kπx), (3.1.3)
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3.1. Nonlocal problem for mixed PDE involving hyper-Bessel and bi-ordinal Hilfer’s FDOs

where p = 1− θ and

Gk(t) =
1

pαΓ(α)

∫ t

a

(
tp − τ p

)α−1
fk(τ)d(τ

p)

−(kπ)2

p2α

∫ t

a

(
tp − τ p

)2α−1
Eα,2α

[
− (kπ)2

pα
(tp − τ p)α

]
fk(τ)d(τ

p),

τk = 2

∫ 1

0

τ(x) sin(kπx)dx, fk(t) = 2

∫ 1

0

f(x, t) sin(kπx)dx, k = 1, 2, 3, ...

In fact, for a = 0, Theorem 3.1.2 implies the result of [5] (see Theorem

3.1).

Proof. It is obvious that the solution (3.1.3) satisfies the conditions. Below, we

explain the derivation of the series C
(
(tθ − aθ)

∂

∂t

)α
u(x, t) in (3.1.3). By using

relation (3.1.2) we get:

C

(
(tθ − aθ)

∂

∂t

)α
u(x, t) =

∞∑
k=0

[(
tθ
∂

∂t

)α(
τkEα,1

[
− (kπ)2

pα
(tp − ap)α

]
+Gk(t)

)
−

− τk(t
p − ap)α

p−αΓ(1− α)

]
sin(kπx).

The hyper-Bessel derivative of the Mittag-Leffler function is(
(tθ − aθ)

∂

∂t

)α
τkEα,1

(
−(kπ)2

pα
(tp − ap)α

)
=

τkp
α(tp − ap)−αEα,1−α

[
−(kπ)2(tp − ap)α

]
.

With the help of Lemma 1.4.4, we can write the last expression as(
(tθ − aθ)

∂

∂t

)α
τkEα,1

[
− (kπ)2

pα
(tp − ap)α

]
=

τkp
α(tp − ap)−α

Γ(1− α)
+ τk(kπ)

2Eα,1

[
− (kπ)2

pα
(tp − ap)α

]
.
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Then evaluating
(
(tθ − aθ) ∂∂t

)α
Gk(t) gives that

(
(tθ−aθ) ∂

∂t

)α
Gk(t) =

(
(tθ−aθ) ∂

∂t

)α(
f ∗k (t)+λ

∗
∫ t

a

(tp−ap)α−1Eα,α

[
λ∗(tp−ap)

]
f ∗k (τ)d(τ

p)
)
=

pαt−pαD−α,α
p,a+

( 1

pα
I−α,αp,a+ t

pαfk(t)+λ
∗
∫ t

a

(tp−ap)α−1Eα,α

[
λ∗(tp−ap)

]
f ∗k (τ)d(τ

p)
)
=

fk(t) + pαt−pαD−α,α
p,a+

(
λ∗
∫ t

a

(tp − ap)α−1Eα,α

[
λ∗(tp − ap)

]
f ∗k (τ)d(τ

p)
)
,

where λ∗ = −λk
pα and f ∗k (t) =

1
pαΓ(α)

∫ t
a(t

p − τ p)α−1fk(τ)d(τ
p).

The second term in the last expression can be simplified using the Erd’elyi-

Kober fractional derivative for n = 1,

− λkt
−pα
(
1− α +

t

p

d

dt

)
t−p(1−α)

Γ(1− α)

∫ t

a

(tp − τ p)−αd(τ p)×∫ τ

a

(τ p − sp)α−1Eα,α

[
λ∗(τ p − sp)α

]
f ∗k (s)d(s

p) =

− λkt
−pα
(
1− α +

t

p

d

dt

)
t−p(1−α)

Γ(1− α)

∫ t

a

f ∗k (s)d(s
p)×∫ t

s

(tp − τ p)−α(τ p − sp)α−1Eα,α

[
λ∗(τ p − sp)α

]
d(τ p) =

−λkt−pα
(
1− α +

t

p

d

dt

)
t−p(1−α)

∫ t

a

Eα,1 [λ
∗(tp − sp)α] f ∗k (s)d(s

p) =

−λk(1− α)t−p
∫ t

a

Eα,1 [λ
∗(tp − sp)α] f ∗k (s)d(s

p)−

−λkt
−pα+1

p

d

dt

(
t−p(1−α)

∫ t

a

Eα,1 [λ
∗(tp − sp)α] f ∗k (s)d(s

p)

)
=

= −λk(1− α)t−p
∫ t

a

Eα,1 [λ
∗(tp − sp)α] f ∗k (s)d(s

p)+

+λk(1− α)t−p
∫ t

a

Eα,1 [λ
∗(tp − τ p)α] f ∗k (τ)d(τ

p)− λkf
∗
k (t)−

−λkt1−p
∫ t

a

λ∗(tp − τ p)α−1Eα,α [λ
∗(tp − τ p)α] f ∗k (τ)d(τ

p) =
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= −λk
(
f ∗k (t) + λ∗

∫ t

a

(tp − ap)α−1Eα,α

[
λ∗(tp − ap)

]
f ∗k (τ)d(τ

p)

)
= −λkGk(t).

Hence, we get

C

(
(tθ − aθ)

∂

∂t

)α
u(x, t) =

−
∞∑
k=0

(kπ)2
[
τkEα,1

(
(kπ)2

pα
(tp − ap)

)
+Gk(t)

]
sin(kπx) + f(x, t).

This proves that the solution (3.1.3) satisfies the equation

C
(
(tθ − aθ)

∂

∂t

)α
u(x, t)− uxx(x, t) = f(x, t).

3.1.2 Differential equation involving bi-ordinal Hilfer derivative

As presented in Definition 1.3.11, the bi-ordinal Hilfer’s fractional derivative of

orders γ ∈ (1, 2], and β ∈ (1, 2] and type µ ∈ [0, 1] can be written as a special

case of (1.3.4) for n = 2:

D
(γ,β)µ
t f(t) = I

µ(2−γ)
0+

(
d

dt

)2

I
(1−µ)(2−β)
0+ f(t). (3.1.4)

Here we present the formula for the Laplace transform of (3.1.4) for the

convenience of the reader which will be used later:

L{D(α,β)µ
t f(t)} = sβ+µ(α−β)L{f(t)} − s1−µ(2−α)×

×
[
I
(1−µ)(2−β)
0+ f(t)|t→0+

]
− s−µ(2−α)

[
d

dt
I
(1−µ)(2−β)
0+ f(t)|t→0+

]
.

(3.1.5)

Let us consider the following problem:

Find a solution of the equation

D
(γ,β)µ
t y(t) + λy(t) = f(t), (1 < γ, β ≤ 2, 0 ≤ µ ≤ 1), (3.1.6)

satisfying the initial conditions

lim
t→0+

I
(1−µ)(2−β)
0+ y(t) = ξ0, (3.1.7)
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lim
t→0+

d

dt
I
(1−µ)(2−β)
0+ y(t) = ξ1, (3.1.8)

where f(t) is a given function and λ, ξ0, ξ1 = const.

We note that in [49] R. Hilfer et al. considered the Cauchy problem

with fractional differential equation involving the generalized Riemann-Liouville

fractional derivative of order n−1 < α < n, n ∈ N and using operational method

they presented explicit solution.

Lemma 3.1.3. If f ∈ C1
−1(0,+∞), then the problem (3.1.6)-(3.1.8) has an

unique solution represented by

y(t) = ξ0t
(β−2)(1−µ)Eδ,δ+µ(2−γ)−1(−λtδ) + ξ1t

µ+(β−1)(1−µ)Eδ,δ+µ(2−γ)(−λtδ)+

+

∫ t

0

(t− τ)δ−1Eδ,δ(−λ(t− τ)δ)f(τ)dτ, (3.1.9)

where δ = β + µ(γ − β).

Proof. In fact, applying the Laplace transform to (3.1.6) by means of (3.1.5)

and considering initial conditions (3.1.7), (3.1.8) yield

L{u} =
ξ0s

1−µ(2−γ) + ξ1s
−µ(2−γ) + L{f}

sβ+µ(γ−β) + λ
, (3.1.10)

where L{u} and L{f} are the Laplace transform of functions u and f , respec-

tively.

According to Lemma 1.4.3, the Laplace transform of the Mittag-Leffler

function can be written as follows

L−1

{
s1−µ(2−γ)

sβ+µ(γ−β) + λ

}
= tβ−2+µ(2−β)Eβ+µ(γ−β),β−1+µ(2−β)(−λtβ+µ(γ−β)),

L−1

{
s−µ(2−γ)

sβ+µ(γ−β) + λ

}
= tβ−1+µ(2−β)Eβ+µ(γ−β),β+µ(2−β)(−λtβ+µ(γ−β)),

L−1

{
L{f}

sβ+µ(γ−β) + λ

}
=

t∫
0

(t− τ)β−1+µ(γ−β)Eβ+µ(γ−β),β+µ(γ−β)(−λ(t− τ)β+µ(γ−β))f(τ)dτ,
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where L−1 is an inverse Laplace transform operator.

Considering above evaluations and after applying the inverse Laplace

transform to (3.1.10), we can write the solution of (3.1.6)- (3.1.8) in the form

(3.1.9).

3.1.3 The statement of the main problem and its investigation

Let us consider the following equation

f(x, t) =


C

(
(tθ − aθ)

∂

∂t

)α
u (x, t)− uxx (x, t) , (x, t) ∈ Ω1,

D
(γ,β)µ
t u (x, t)− uxx (x, t) , (x, t) ∈ Ω2,

(3.1.11)

in a domain Ω = Ω1 ∪ Ω2 ∪Q. Here Ω1 = {(x, t) : 0 < x < 1, a < t < b},

Ω2 = {(x, t) : 0 < x < 1, 0 < t < a}, Q = {(x, t) : 0 < x < 1, t = a}, a, b ∈ R+

such that a < b, 0 < α ≤ 1, θ < 1, 1 < γ, β < 2, 0 ≤ µ ≤ 1, f(x, t) is a

given function, C
(
(tθ − aθ)

∂

∂t

)α
is the regularized Caputo-like counterpart of

the hyper-Bessel operator defined as in (3.1.1), (3.1.2) D
(γ,β)µ
t is the bi-ordinal

Hilfer’s derivative defined as in (3.1.4).

Problem. Find a solution of (3.1.11) in Ω, satisfying regularity conditions

u(·, t) ∈ C[0, 1] ∩ C1(0, 1), C
(
(tθ − aθ)

∂

∂t

)α
u(x, ·) ∈ C[a, b],

t2−qu, t2−qux ∈ C(Ω2), t2−qD
(γ,β)µ
t u(x, t) ∈ C(Ω2), uxx ∈ C(Ω)

and the boundary-initial conditions

u(0, t) = 0, 0 ≤ t ≤ b, (3.1.12)

u(1, t) = 0, 0 ≤ t ≤ b, (3.1.13)

lim
t→0+

I
(1−µ)(2−β)
0+ u(x, t) = φ(x), 0 ≤ x ≤ 1, (3.1.14)

as well as the gluing conditions

lim
t→a−

I
(1−µ)(2−β)
0+ u(x, t) = lim

t→a+
u(x, t), 0 ≤ x ≤ 1, (3.1.15)
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lim
t→a−

d

dt
I
(1−µ)(2−β)
0+ u(x, t) = lim

t→a+
(t− a)1−(1−θ)αut(x, t), 0 < x < 1, (3.1.16)

where φ(x) is a given function, q = β + µ(2− β).

The key motivation to formulate this problem is a possible application

in diffusion-wave processes, which will be described by the mixed equation as

Eq.(3.1.11) [55]. For example, a gas movement in a channel surrounded by

porous medium will be governed by the mixed parabolic-hyperbolic type equa-

tion, because inside of the channel movement will be described by the wave

equation, in porous media by diffusion equation [42]. Practical importance of

the diffusion part of the considered mixed equation can be seen in [39]. Regard-

ing the remained part we note that use bi-ordinal Hilfer derivative generalizes

classical wave equation and both two fractional generalizations: the Riemann-

Liouville and the Caputo cases.

Our choice of the method of separation of variables is motivated by the

considered domain which allows us to use this powerful method. We, as well,

note that there is a method of Green’s function, which is successfully applied

for fractional diffusion-wave equations by A.Pskhu [86], [88]. However, in our

case, there are certain difficulties linked to the unknown properties of the hyper-

Bessel operator which did not allow us to use this tool.

First we introduce the following new notations:

lim
t→0+

d

dt
I
(1−µ)(2−β)
0+ u(x, t) = ψ(x), 0 < x < 1, (3.1.17)

lim
t→a+

u(x, t) = τ(x), 0 ≤ x ≤ 1, (3.1.18)

here τ(x) and ψ(x) are unknown functions to be found later.

Using the method of separation of variables for solving the homogeneous

equation corresponding to (3.1.11), i.e. searching for a solution as u(x, t) =

T (t)X(x) and considering (3.1.12) and (3.1.13) in homogeneous case, yield the
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following problem:

X ′′(x) + λX(x) = 0, X(0) = 0, X(1) = 0. (3.1.19)

It is obvious that (3.1.19) is a Sturm-Liouville problem on finding eigenvalues

and eigenfunctions and it has the following solution:

λk = (kπ)2, Xk(x) = sin(kπx), k = 1, 2, 3, .... (3.1.20)

Considering the fact that the system of eigenfunctions {Xk(x)} in (3.1.20)

forms the orthogonal basis in L2(0, 1) [79], we look for the solution u(x, t) and

given function f(x, t) in the form of series expansions as follows:

u(x, t) =
∞∑
k=1

uk(t) sin(kπx), (3.1.21)

f(x, t) =
∞∑
k=1

fk(t) sin(kπx), (3.1.22)

where uk(t) is unknown function to be found, fk(t) are known and given by

fk(t) = 2

1∫
0

f(x, t) sin(kπx)dx.

Substituting (3.1.21) and (3.1.22) into equation (3.1.11) in Ω1 and consid-

ering initial condition (3.1.18) gives the following fractional differential equation

C

(
(tθ − aθ)

d

dt

)α
uk(t) + (kπ)2uk(t) = fk(t)

with initial condition

uk(a+) = τk,

where τk is the coefficient of series expansion of τ(x) in terms of orthogonal

basis (3.1.20), i.e.,

τk = 2

∫ 1

0

τ(x) sin(kπx)dx.
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After finding the solution of this problem, then considering (3.1.21) we can

write the solution of (3.1.11) in Ω1 satisfying the conditions (3.1.12), (3.1.13)

and (3.1.18) stated in (3.1.3).

Now by using the solution (3.1.3), we evaluate (t− a)1−(1−θ)αut(x, t):

(t− a)1−(1−θ)αut(x, t) =
∞∑
k=1

[
−(kπ)2

pα−1
τk Eα,α

(
− (kπ)2

pα
(tp − ap)α

)
+ (t− a)1−pαGk(t)

]
sin(kπx),

where p = 1− θ.

Considering above given evaluations we obtain the following relation on

Q deduced from Ω1 as t→ a+:

lim
t→a+

(t− a)1−(1−θ)αut(x, t) =
∞∑
k=1

[
− (kπ)2

Γ(α)pα−1
τk

]
sin(kπx). (3.1.23)

Now we establish another relation on Q which will be reduced from Ω2.

According to the method of separation of variables, considering (3.1.21),

(3.1.22) and initial conditions (3.1.14), (3.1.17), we obtain the following problem

finding a solution of equation

D
(γ,β)µ
t uk(t) + λkuk(t) = fk(t),

satisfying the initial conditions

lim
t→0+

I
(1−µ)(2−β)
0+ uk(t) = φk,

lim
t→0+

d

dt
I
(1−µ)(2−β)
0+ uk(t) = ψk.

According to Lemma 3.1.3 it is obvious that (3.1.9) is the solution for

above given problem. Hence, using the solution (3.1.9) and taking (3.1.21) into

account we write the solution of (3.1.11) in Ω2 satisfying (3.1.12), (3.1.13) and

(3.1.14), (3.1.17) as

u(x, t) =
∞∑
k=1

uk(t) sin(kπx), (3.1.24)
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where

uk(t) = φkt
(β−2)(1−µ)Eδ,δ+µ(2−γ)−1(−λktδ) + ψkt

µ+(β−1)(1−µ)Eδ,δ+µ(2−γ)(−λktδ)+

+

t∫
0

(t− τ)δ−1Eδ,δ

[
−λk(t− τ)δ

]
fk(τ)dτ,

here δ = β + µ(γ − β) and

φk = 2

1∫
0

φ(x) sin(kπx)dx

and ψk are not known yet.

Now using (3.1.24) we simplify lim
t→a−

I
(1−µ)(2−β)
0+ uk(t) and

lim
t→a−

d

dt
I
(1−µ)(2−β)
0+ uk(t) as follows

lim
t→a−

I
(1−µ)(2−β)
0+ uk(t) = φk Eδ,1(−λkaδ) + ψkaEδ,2(−λkaδ)

+

∫ a

0

(a− s)δ+q−1Eδ,δ+q

[
− λk(a− s)δ

]
fk(s)ds,

(3.1.25)

lim
t→a−

d

dt
I
(1−µ)(2−β)
0+ uk(t) = −φkλkaδ−1Eδ,δ(−λkaδ) + ψk Eδ,1(−λkaδ)

+

∫ a

0

(a− s)δ+q−2Eδ,δ+q−1

[
− λk(a− s)δ

]
fk(s)ds.

(3.1.26)

After substituting (3.1.25) and (3.1.18) into gluing condition (3.1.15) and sub-

stituting (3.1.26), (3.1.23) into the gluing condition (3.1.16), we obtain the

following the system of linear algebraic equations with respect to τk and ψk:

φk Eδ,1(−λkaδ) + ψkaEδ,2(−λkaδ)+

+

∫ a

0

(a− s)δ+q−1Eδ,δ+q

[
− λk(a− s)δ

]
fk(s)ds = τk,

φkλka
δ−1Eδ,δ(−λkaδ)− ψk Eδ,1(−λkaδ)−∫ a

0

(a− s)δ+q−2Eδ,δ+q−1

[
− λk(a− s)δ

]
fk(s)ds =

λk
Γ(α)pα−1

τk.

(3.1.27)
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From (3.1.27), we find ψk and τk:

ψk =
Bk

∆k
φk +

Ck
∆k

, (3.1.28)

τk =
(
Eδ,1(−λkaδ) +

Bk

∆k
Eδ,2(−λkaδ)

)
φk +

Ck
∆k

Eδ,2(−λkaδ)+

+

∫ a

0

(a− s)δ+q−1Eδ,δ+q

[
− λk(a− s)δ

]
fk(s)ds, (3.1.29)

where

∆k = Eδ,1(−λkaδ) +
λka

Γ(α)pα−1
Eδ,2(−λkaδ),

Bk =
−λkp1−α

Γ(α)
Eδ,1(−λkaδ) + λka

δ−1Eδ,δ(−λkaδ),

Ck =
−λkp1−α

Γ(α)

∫ a

0

(a− s)δ+q−1Eδ,δ+q

[
− λk(a− s)δ

]
fk(s)ds−

−
∫ a

0

(a− s)δ+q−2Eδ,δ+q−1

[
− λk(a− s)δ

]
fk(s),

here λk = (kπ)2, q = (1− µ)(2− β).

First of all, we will find an estimate for Bk by using Lemma 1.4.1:

|Bk| ≤
λkp

1−α

Γ(α)
|Eδ,1(−λkaδ)|+ λka

δ−1|Eδ,δ(−λkaδ)| ≤

≤ λkp
1−α

Γ(α)

M

1 + λkaδ
+ λka

δ−1 M

1 + λkaδ
≤

≤ λkp
1−α

Γ(α)

M

λkaδ
+ λka

δ−1 M

λkaδ
=
Mp1−α

aδΓ(α)
+
M

a
=

=
M

a

(
1 +

p1−α

aδ−1

)
=M1 <∞, (M1 = const).

Now let us find the upper bound of Ck after integrating by parts the

integrals in it:

|Ck| ≤
| − λk|p1−α

Γ(α)

∫ a

0

|a− s|δ+q−1|Eδ,δ+q(−λk(a− s)δ)||fk(s)|ds+

+|fk(0)|aδ+q|Eδ,δ+q[−λkaδ]|+
∫ a

0

|a− s|δ+q−1|Eδ,δ+q(−λk(a− s)δ)||f ′k(s)|ds ≤
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≤ p1−α

Γ(α)

∫ a

0

|a− s|δ+q−1

∣∣∣∣ M

1 + λk|a− s|δ

∣∣∣∣ |f2k(s)|ds+ |fk(0)|
aδ+qM

1 + λkaδ
+

+

∫ a

0

|a− s|δ+q−1

∣∣∣∣ M

1 + λk|a− s|δ

∣∣∣∣ |f ′k(s)|ds ≤
≤ p1−α

λkΓ(α)

a∫
0

|a− s|q−1M |f2k(s)|ds+
|fk(0)|Maq

λk
+

∫ a

0

|a− s|q−1M |f ′k(s)|ds
λk

=

=
1

λk

[p1−αMC1a
q

Γ(α)q
+ |fk(0)|Maq +

MC2a
q

q

]
=
M2

λk
, M2 > 0,

where |f2k(t)| ≤ C1, |f ′k(t)| ≤ C2, f2k(t) = −λkfk(t), f ′k(t) =

2
1∫
0

ft(x, t) sin(kπx)dx.

Note that on above inequalities we imply that f(·, t) ∈ C1(0, 1), fxx(·, t) ∈

L1(0, 1) and f(x, ·) ∈ C1 (0, a) for convergence of the last integrals.

By using above evaluations, we find the estimate for |ψk|:

|ψk| ≤
1

|∆k|

[
|Bk||φk|+ |Ck|

]
≤ 1

|∆k|

[M1|φ1k|√
λk

+
M2

λk

]
≤

≤ 1

|∆k|

(
2M 2

1

λk
+ 2|φ1k|2 +

M2

λk

)
=
M3

λk

(3.1.30)

where M3 > 0, φ1k = −
√
λkφk and we assume φ′ ∈ L2(0, 1), provided that

∆k ̸= 0 for any k.

From (3.1.29) and in the same way one can show that

|τk| ≤
[
|Eδ,1(−λkaδ)|+ |Bk

∆k
||Eδ,2(−λkaδ)|

]
|φk|+ |Ck

∆k
||Eδ,2(−λkaδ)|+

+

a∫
0

|a− s|δ+q−1|Eδ,δ+q(−λk(a− s)δ)||fk(s)|ds ≤

≤
[ M

1 + λkaδ
+ |Bk

∆k
| M

1 + λkaδ

]
|φk|+ |Ck

∆k
| M

1 + λkaδ
+

+

a∫
0

|a− s|δ+q−1 M

1 + λk|a− s|δ
|fk(s)|ds ≤
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≤ M |φk|
λkaδ

(
1 + |Bk

∆k
|
)
+ |Ck

∆k
| M
λkaδ

+
M

λk

a∫
0

|a− s|q−1|fk(s)|ds ≤

≤ 1

λk

[M
aδ

(
|φk|+ |Bk

∆k
||φk|+ |Ck

∆k
|
)
+
MC0a

q

q

]
=
M4

λk
, (3.1.31)

where M4 > 0, φ ∈ L1(0, 1), |fk(t)| ≤ C0.

The system of linear equations (3.1.27) is equivalent to the considered

problem in terms of existing the solution. For that reason, if ∆k ̸= 0 for any k,

(3.1.27) has only one solution or the considered problem’s solution is unique, if

it exists. Therefore, we show that ∆k is not equal to zero for any sufficiently

large k.

By using Lemma 1.4.5, the behavior of ∆k at k → ∞ can be written as:

lim
k→∞

∆k = lim
|z|→∞

[
Eδ,1(z) +

p1−α

Γ(α)aδ−1
zEδ,2(z)

]
=

p1−α

Γ(α)Γ(2− δ)aδ−1
,

where z = −λkaδ. This proves that ∆k ̸= 0 for sufficiently large k.

For proving the existence of the solution, we need to show uniform

convergence of series representations of u(x, t), uxx(x, t),
C
(
tθ ∂∂t
)α
u(x, t) and

D
(γ,β)µ
t u(x, t) by using the solution (3.1.3) and (3.1.24) in Ω1 and Ω2 respec-

tively.

In [5], the uniform convergence of series of u(x, t) and uxx(x, t) was shown

for t > 0. Similarly, for t > a, we obtain the following estimate:

|u(x, t)| ≤M

∞∑
k=1

( |τk|
pα + (kπ)2|tp − ap|α

+
1

(kπ)2

∫ t

a

|tp − τ p|α−1f2k(τ)d(τ
p) +

+

∫ t

a

|tp − τ p|2α−1

pα + (kπ)2|tp − ap|α
|f2k(τ)|d(τ p)

)
,

where |f2k(t)| ≤ C1, f2k(t) = 2
1∫
0

fxx(x, t) sin(k πx)dx.

Since (3.1.31) and
∂2

∂x2
f(·, t) ∈ L1(0, 1), then the above series converges

and hence, by the Weierstrass M-test the series of u(x, t) is uniformly convergent

in Ω1.
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The series of uxx(x, t) is written in the form below

uxx(x, t) = −
∞∑
k=1

(kπ)2
(
τkEα,1

[
(kπ)2

pα
(t− a)pα

]
+Gk(t)

)
sin(kπx).

We obtain the following estimate by considering the inequality (3.1.31):

|uxx(x, t)| ≤M
∞∑
k=1

( M4

pα + (kπ)2|tp − yp|α
+

1

(kπ)2

t∫
a

|tp − τ p|α−1|f4k(τ)|d(τ p)

+

t∫
a

|tp − τ p|2α−1

pα + (kπ)2|tp − τ p|α
|f4k(τ)|d(τ p)

)
,

where f4k(t) = 2

1∫
0

∂4

∂x4
f(x, t) sin(kπx)dx and f(0, t) = f(1, t) = fxx(0, t) =

fxx(1, t) = 0.

Since
∂4f

∂x4
(·, t) ∈ L1(0, 1), one can make sure that this above series is

convergent.

Thus, the series in the expression of uxx(x, t) is bounded by a convergent

series which is uniformly convergent according to the Weierstrass M-test. Then,

the series of C
(
(tθ − aθ)

∂

∂t

)α
u(x, t) which can be written by

C

(
(tθ − aθ)

∂

∂t

)α
u(x, t) =

−
∞∑
k=1

(kπ)2
(
τkEα,1

[
− (kπ)2

pα
(t− a)pα

]
+Gk(t)

)
sin(kπx) + f(x, t),

has uniform convergence which can be showed in the same way to the uniform

convergence of the series of uxx(x, t) (see [5]).

Now we need to show that the series of t2−qu(x, t) and its derivatives

should converge uniformly in Ω2 by using (3.1.24). We estimate that

|t2−qu(x, t)| ≤
∞∑
k=1

(
|φk||Eδ,δ+µ(2−γ)−1(−λktδ)|+ |ψk||tEδ,δ+µ(2−γ)(−λktδ)|+
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+|fk(0)||tδ+2−q||Eδ,δ+1(−λktδ)|+t2−q
∫ t

0

|t−τ |δ|Eδ,δ+1

(
−λk(t−τ)δ

)
||f ′k(τ)|dτ

)
.

Consider estimates of the Mittag-Leffler function (see Lemma 1.4.1)

|t2−qu(x, t)| ≤
∞∑
k=1

( |φk|M
1 + λktδ

+
|t||ψk|M
1 + λktδ

+
|fk(0)||tδ+2−q|M

1 + λktδ

+t2−q
∫ t

0

|t− τ |δ M

1 + λk|t− τ |δ
|f ′k(τ)|dτ

)
,

where f ′k(t) =
1∫
0

f ′t(x, t) sin(kπx)dx, f
′
t(·, t) ∈ L1(0, 1) and φ′(x) ∈ L2(0, 1).

Then the series is convergent or in other words the functional series represents

|u(x, t)| is bounded by the convergent series. According to the Weierstrass

M-test this functional series converges uniformly in Ω2.

In the similar way one can show that

|uxx(x, t)| ≤
∞∑
k=1

(kπ)2
(
|φk||t(β−2)(1−µ)Eδ,δ+µ(2−γ)−1(−λktδ)|+

+|ψk||tµ+(β−1)(1−µ)Eδ,δ+µ(2−γ)(−λktδ)|+ |fk(0)||tδ||Eδ,δ+1(−λktδ)|+

+

∫ t

0

|t− τ |δ|Eδ,δ+1

(
− λk(t− τ)δ

)
||f ′k(τ)|dτ

)
.

Considering (3.1.30), and the properties of Mittag-Leffler function we write the

following estimate for uxx(x, t) in Ω2

|uxx(x, t)| ≤
∞∑
k=1

[ |φk|Mλkt
(β−2)(1−µ)

1 + λktδ
+
M3t

µ+(β−1)(1−µ)

1 + λktδ
+
M ||f2k(0)tδ

1 + λkaδ
|+

+

t∫
0

|t− τ |δ M

1 + λk(t− τ)δ
|f ′2k(τ)|dτ

]
,

where f ′2k(t) = 2
1∫
0

fxxt(x, t) sin(kπx)dx, and also it implies that f(x, ·) ∈

C1(0, a), fxxt(·, t) ∈ L1(0, 1) and φ′ ∈ L2(0, 1). Here we also considered that

∞∑
k=1

|φk| =
∞∑
k=1

|φ1k|
kπ

≤
∞∑
k=1

1

2

(
1

(kπ)2
+ |φ1k|2

)
=

∞∑
k=1

1

(kπ)2
+ ∥φ′∥L2(0,1).
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From the last inequality, we can see that the functional series uxx(x, t) is

bounded by convergent series and it means that this functional series converges

uniformly in Ω2, according to the Weierstrass M-test.

Using the equation in Ω2, we write D
(γ,β)µ
t u(x, t) in the form

D
(γ,β)µ
t u(x, t) = uxx(x, t) + f(x, t)

and its uniform convergence can be shown in a similar way.

Finally, considering the Weierstrass M-test, the above arguments prove

that Fourier series in (3.1.3) and (3.1.24) converge uniformly in the domains Ω1

and Ω2. This is the proof that the considered problem’s solution exists in Ω.

The intention of this paper was to prove the uniqueness and existence of

the solution to the problem (3.1.11)-(3.1.16), as we summarize in the following

theorem.

Theorem 3.1.4. If the following conditions

1) ∆k ̸= 0, for all k = 1, 2, 3, ...

2) φ ∈ C[0, 1] and φ′ ∈ L2(0, 1),

3) f(·, t) ∈ C3[0, 1] and f(x, ·) ∈ C1 (0, a), f(x, ·) ∈ Cµ(a, b), such that f(0, t) =

f(1, t) = 0, fxx(0, t) = fxx(1, t) = 0 and
∂4

∂x4
f(·, t) ∈ L1(0, 1) hold, then there

exists a unique solution of the considered problem (3.1.11)-(3.1.16).

3.2 On a nonlocal problem for the fractional order mixed

PDE with singular coefficient

Studying non-local problems for mixed-type partial differential equations is one

of the interesting target of investigations by many scientists because of their

applications in physics, engineering. Non-local problems might develop when

investigating various mathematical biology topics, also including soil moisture
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3.2. On a nonlocal problem for the fractional order mixed PDE with singular coefficient

prediction and plasma problems. It’s worth noting that non-local conditions

occur when modeling the flow around a profile by a subsonic velocity stream

with a supersonic zone. We also remind that, in the case of mixed-type equa-

tions, when I. M. Gel’fand considered an example of gas motion in a channel

surrounded by a porous medium, and the gas motion in a channel was described

by a wave equation, while the diffusion equation was posed outside the chan-

nel, an interest in studying the problems for wave-diffusion equations arose [42].

Also, Ya. S. Uflyand investigated a problem [114] on the propagation of elec-

tric oscillations in compound lines when the losses on a semi-infinite line were

neglected and the rest of the line was treated as a cable with no leaks and this

problem reduced this problem to a mixed parabolic-hyperbolic type equation.

Considering above the problem formulated in Section 3.1 now we study

non-local problem for mixed-type equation involving fractional wave equation

generated by the right-hand sided bi-ordinal Hilfer fractional derivative and sub-

diffusion equation with the regularized Caputo-like counterpart of hyper-Bessel

fractional differential operator. We note that the similar problems have been

studied for mostly left-hand sided fractional differential operators. Motivation

of taking this operator is that we would like to consider the process which the

time variable used negative called history.

3.2.1 Formulation of the problem

In this subsection, we investigate the following fractional order mixed differ-

ential equation involving the regularized Caputo-like counterpart of the hyper-

Bessel operator and the bi-ordinal Hilfer derivative:

f(x, t) =


C

(
tθ
∂

∂t

)α1

u (x, t)− 1

x
ux(x, t)− uxx (x, t) , (x, t) ∈ Ω1,

D
(α2,β2)µ
0− u (x, t)− 1

x
ux(x, t)− uxx (x, t) , (x, t) ∈ Ω2,

(3.2.1)
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3.2. On a nonlocal problem for the fractional order mixed PDE with singular coefficient

in Ω = Ω1 ∪ Ω2 ∪ Q domain, where Ω1 = {(x, t) : 0 < x < 1, 0 < t < T},

Ω2 = {(x, t) : 0 < x < 1, −T < t < 0}, Q = {(x, t) : 0 < x < 1, t = 0},

0 < α1 ≤ 1, θ < 1, 1 < α2, β2 ≤ 2, 0 ≤ µ ≤ 1,

D
(α2,β2)µ
0− is the right-sided bi-ordinal Hilfer fractional derivative in the form

(1.3.5) and C
(
tθ ddt

)α1

is the regularized Caputo-like counterpart of the hyper-

Bessel fractional differential operator defined as (1.3.15).

Problem. Find a solution of eq.(3.2.1) in Ω, which satisfies the following

regularity conditions

u(x, t) ∈ C(Ω \Q), u(·, t) ∈ C2(Ω1 ∪ Ω2),

C
(
tθ
∂

∂t

)α1

u(x, t) ∈ C(Ω1), D
(α2,β2)µ
0− u(x, t) ∈ C(Ω2)

along with the boundary conditions

lim
x→0+

xux(x, t) = 0, u(1, t) = 0, −T ≤ t ≤ T, (3.2.2)

non-local condition

m∑
i=1

ζiI
(1−µ)(2−β2)
0− u(x, ξi) = u(x, T ), 0 ≤ x ≤ 1, (3.2.3)

and the gluing conditions

lim
t→0−

I
(1−µ)(2−β2)
0− u(x, t) = lim

t→0+
u(x, t), 0 ≤ x ≤ 1, (3.2.4)

lim
t→0−

d

dt
I
(1−µ)(2−β2)
0− u(x, t) = lim

t→0+
t1−(1−θ)α1ut(x, t), 0 < x < 1, (3.2.5)

where −T ≤ ξ1 < ξ2 < .... < ξm < 0, f(x, t) is a given function.

We notice that while we have been investigated the initial-boundary

value or non-local problems involving popular class of differential operators

like the Riemann-Liouville, Caputo, Hilfer fractional derivatives, Hadamard,

Hilfer-Hadamard, Prabhakar, Atangana-Baleanu, the interest to another type

of the differential operators is increased by many scientists, for instance, the
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3.2. On a nonlocal problem for the fractional order mixed PDE with singular coefficient

hyper-Bessel differential operator is becoming main target of research. The

importance of the hyper-Bessel differential operator is increasing since intro-

duced by Dimovski [23] because of its applications in science. For example, in

[40] authors used hyper-Bessel differential operator to investigate heat diffusion

equation for describing the Brownian motion. In [39] it is investigated fractional

relaxation equation the regularized Caputo-like counterpart of the hyper-Bessel

operator. Among these applications of fractional differential operators, it is

worth to mention the work containing general idea of using those operators.

For example, in [7] prof. Ashurov considered nonlocal problem in time for the

general, self-adjoint operator for for subdiffusion equation.

Several local and nonlocal boundary value problems for mixed-type equa-

tions, ie, elliptic-hyperbolic and hyperbolic type equations were published

[2],[118]. The interesting point is that the conjugation conditions are taken

according to the considered mixed-type equations and domains [64], [13].

Before moving to investigation of main problem, first let us consider the

Cauchy problem is investigated for the ordinary differential equation involving

the right-sided bi-ordinal Hilfer fractional derivative:
D

(α,β)µ
0− u(t) = λu(t) + g(t),

lim
t→0−

I2−γ0− u(t) = χ0,

lim
t→0−

d
dtI

2−γ
0− u(t) = χ1,

(3.2.6)

where 1 < α, β ≤ 2, γ = β + µ(2− β), χ0, χ1 ∈ R, g(t) is the given function.

Lemma 3.2.1. Let Iδ0−g(t) ∈ AC2[−T, 0]. Then the solution of the problem

(3.2.6) as follows:

u(t) = χ0(−t)γ−2Eδ,γ−1[λ(−t)δ]− χ1(−t)γ−1Eδ,γ[λ(−t)δ]+

+

0∫
t

(z − t)δ−1Eδ,δ

[
λ(z − t)δ

]
g(z)dz,

(3.2.7)
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where δ = β + µ(α− β), γ = β + µ(2− β).

Proof. First, we rewrite the equation in 3.2.6 according to Remark 1.3.12 as

follows:

Iγ−δ0− Dγ
0−u(t) = λu(t) + g(t).

By applying Iδ0− operator to this equation we get

Iγ0−D
γ
0−u(t) = λIδ0−u(t) + Iδ0−g(t)

and using the Property 1.3.5 of the Riemann-Liouville integral and differential

operators yields

u(t) = λIδ0−u(t) + Iδ0−g(t) +
(−t)γ−2ξ0
Γ(γ − 1)

− (−t)γ−1ξ1
Γ(γ)

.

This integral equation has the following solution according to Lemma 1.3.7

u(t) = g∗(t) + λ

0∫
t

(s− t)δ−1Eδ,δ[λ(s− t)δ]g∗(s)ds = L1(t) + L2(t),

where g∗(t) = Iδ0−g(t) +
(−t)γ−2χ0

Γ(γ − 1)
− (−t)γ−1χ1

Γ(γ)
.

L1(t) =
(−t)γ−2χ0

Γ(γ − 1)
− (−t)γ−1χ1

Γ(γ)
+

+λ

0∫
t

(s− t)δ−1Eδ,δ[λ(s− t)δ]
((−s)γ−2χ0

Γ(γ − 1)
− (−s)γ−1χ1

Γ(γ)

)
ds,

L2(t) = Iδ0−g(t) + λ

0∫
t

(s− t)δ−1Eδ,δ[λ(s− t)δ]Iδ0−g(s)ds.

If we use z = t − s substitution to the integral in L1(t) and using the

Lemma 1.4.4 and the Property (1.4.1) we can easily obtain the following result

L1(t) = χ0(−t)γ−2Eδ,γ−1[λ(−t)δ]− χ1(−t)γ−1Eδ,γ[λ(−t)δ]. (3.2.8)
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Now we consider second integral on L2(t)

0∫
t

(s− t)δ−1Eδ,δ[λ(s− t)δ]Iδ0−f(s)ds =

=
1

Γ(δ)

0∫
t

(s− t)δ−1Eδ,δ[λ(s− t)δ]ds

0∫
s

(z − s)δ−1f(z)dz =

=
1

Γ(δ)

0∫
t

f(z)dz

z∫
t

(z − s)δ−1(s− t)δ−1Eδ,δ[λ(s− t)δ]ds.

By means of formula (1.4.1) we simplify the integrant as follows

z∫
t

(z − s)δ−1(s− t)δ−1Eδ,δ[λ(s− t)δ]ds = Γ(δ)(z − t)2δ−1Eδ,2δ(λ(z − t)δ).

To clarify further, we use the Lemma 1.4.4, then the form of L2(t) can be

written as follows

L2(t) =

0∫
t

(z − t)δ−1Eδ,δ

[
λ(z − t)δ

]
f(z)dz. (3.2.9)

Finally, from (3.2.8) and (3.2.9), we can obtain the solution presented in

Lemma 3.2.1. The similar lemma to Lemma 3.2.1 was also studied in [52] for

equation with the left-sided Hilfer differential operator. The proof of Lemma

3.2.1 is completed.

Now we recall some auxiliary results about parametric form of Bessel’s

equation, of order p given by

x2y′′ + xy′ + (λ2x2 − p2)y = 0 (3.2.10)

and its the general solution which is bounded at near x = 0

y(x) = C1Jp(λx)
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3.2. On a nonlocal problem for the fractional order mixed PDE with singular coefficient

where Jp(λx) is Bessel function of the first kind of order p. The value of λ

denotes the zeros of the Bessel function Jp(x) when we impose the boundary

condition y(1) = 0. In other words λ satisfies Jp(λ) = 0 equation. We note that

for arbitrary large k zeros of Jp(x) can be given by [110]

λk = πk +
pπ

2
− π

4
(3.2.11)

Let λ1, λ2, ..., λk, ... be the positive roots of the equation Jp(x) = 0

arranged in increasing order. The functions (see [110] page 221)

Jp(λ1x), Jp(λ2x), ..., Jp(λkx), ... (3.2.12)

form an orthogonal system on [0, 1],with weight x. For any function f(x) which

is absolutely integrable on [0, 1] can be expanded into the Fourier series with

respect to the system (3.2.12) i.e.,

f(x) =
∞∑
k=1

ckJp(λkx)

where the constants

ck =
2

J2
p+1(λk)

1∫
0

xf(x)Jp(λkx)dx, k = 1, 2, ...

are called Fourier-Bessel coefficients of f(x).

Theorem 3.2.2. [110] Let f(x) be a function defined on the interval [0, 1]

such that f(x) is differentiable 2s times (s ≥ 1) and

• f(0) = f ′(0) = .... = f (2s−1)(0) = 0

• f (2s)(x) is bounded (this derivative may not exist at certain points)

• f(1) = f ′(1) = ... = f (2s−2)(1) = 0

then the following inequalities satisfied by the Fourier-Bessel coefficients of f(x):

|ck| ≤
M

λ
2s− 1

2

k

.
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Theorem 3.2.3. [110] If p ≥ 0 and if

|ck| ≤
M

λ1+εk

where ε is positive constant, then the series

∞∑
k=1

ckJp(λkx)

converges absolutely and uniformly on [0, 1].

3.2.2 Construction of a formal solution

Using the separation variables method we obtain the following spectral problem

X ′′(x) +
1

x
X ′(x) + λ2X(x) = 0, (3.2.13)

lim
x→0+

xX(x) = 0, X(1) = 0, (3.2.14)

It is clear that (3.2.13) is a Bessel equation of order zero; furthermore,

the solution of the problem (3.2.13), (3.2.14) is a self-adjoint problem and its

eigenfunctions are the Bessel functions given as follows

Xk(x) = J0(λkx), k = 1, 2, ..., (3.2.15)

and the eigenvalues λk, are the positive zeros of J0(x), i.e,

λk = πk − π

4
+
ζ(λk)

k
.

The system of eigenfunctions {Xk} forms a complete orthogonal system

in L2(0, 1) (see [47], page 40), hence we can write sought function and given

function in the form of series expansions as follows:

u(x, t) =
∞∑
k=1

uk(t)J0(λkx), (3.2.16)

f(x, t) =
∞∑
k=1

fk(t)J0(λkx), (3.2.17)
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where uk(t) is not known yet, and fk(t) is the coefficient of Fourier-Bessel series,

i.e,

fk(t) =
2

J2
1 (λk)

1∫
0

xf(x, t)J0(λkx)dx.

Let us introduce new notations:

lim
t→0−

I
(1−µ)(2−β2)
0− u(x, t) = φ(x), 0 ≤ x ≤ 1, (3.2.18)

lim
t→0−

d

dt
I
(1−µ)(2−β2)
0− u(x, t) = ψ(x), 0 < x < 1, (3.2.19)

lim
t→0+

u(x, t) = τ(x), 0 ≤ x ≤ 1, (3.2.20)

here φ(x), τ(x) and ψ(x) are unknown functions to be found later.

Further, after substituting (3.2.16) and (3.2.17) into the Eq.(3.2.1) and

initial conditions (3.2.18), (3.2.19), (3.2.20), we obtain the following problems
C
(
tθ
d

dt

)α1

uk(t) + λ2kuk(t) = fk(t),

uk(0+) = τk,

(3.2.21)

and 
D

(α2,β2)µ
0− uk(t) + λ2kuk(t) = fk(t),

I
(1−µ)(2−β2)
0− uk(0−) = φk,

d

dt
I
(1−µ)(2−β2)
0− uk(0−) = ψk,

(3.2.22)

in Ω1 and Ω2 respectively.

The problem (3.2.21) was studied in [5] and by considering this result we

can write the solution of (3.2.1) in Ω1 which satisfies the conditions (3.2.2),

(3.2.20) as

u(x, t) =
∞∑
k=1

[
τkEα1,1

(
− λk

2

pα1
tpα1

)
+Gk(t)

]
J0(λkx), (3.2.23)

here p = 1− θ and

Gk(t) =
1

pα1Γ(α1)

∫ t

0

(
tp − τ p

)α1−1
fk(τ)d(τ

p)−
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− λk
2

p2α1

∫ t

0

(
tp − τ p

)2α1−1
Eα1,2α1

[
− λk

2

pα1
(tp − τ p)α1

]
fk(τ)d(τ

p),

where τk is not known yet.

As we mentioned above the solution the problem (3.2.22) can be given by

the formula (3.2.7) presented in Lemma 3.2.1 and by considering (3.2.16) we

can write the solution of (3.2.1) which satisfies the conditions (3.2.2), (3.2.18),

(3.2.19) in Ω2 domain represented in the following form

u(x, t) =
+∞∑
k=1

φk(−t)γ2−2Eδ2,γ2−1[−λ2k(−t)δ2]J0(λkx)−

−
+∞∑
k=1

ψk(−t)γ2−1Eδ2,γ2[−λ2k(−t)δ2]J0(λkx)+

+
+∞∑
k=1

0∫
t

(z − t)δ2−1Eδ2,δ2[−λ2k(z − t)δ2]fk(z)dzJ0(λkx), (3.2.24)

where γ2 = β2 + µ(2− β2), δ2 = β2 + µ(α2 − β2) and φk, ψk are not known yet.

After substituting (3.2.23) and (3.2.24) into gluing conditions with consid-

ering (3.2.16), (3.2.17) we obtain the following system of equations with respect

to τk, φk and ψk: 
ψk = − λ2k

Γ(α1)
τk,

τk = φk

(3.2.25)

With the help of non-local condition (3.2.3) and from (3.2.25), we find

unknowns as follows

τk = φk =
Fk
∆k

, (3.2.26)

ψk =
−λ2k

pα1Γ(α1)

Fk
∆k

, (3.2.27)

where

∆k =
m∑
i=1

ζi

[
Eδ2,1(−λ2k(−ξi)) +

λ2kξi
pα1Γ(α1)

Eδ2,2(−λ2k(−ξi))
]
− Eα1,1

(
− λ2k
pα1

T α1p
)
,
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Fk = Gk(T )−
m∑
i=1

ζi

0∫
ξi

(s− ξi)
δ2−γ2+1Eδ2,δ2−γ2+2(−λ2k(s− ξi)

δ2)fk(s)ds,

Gk(T ) =
1

pα1Γ(α1)

∫ T

0

(
T p − τ p

)α1−1
fk(τ)d(τ

p)−

− λk
2

p2α1

∫ T

0

(
T p − τ p

)2α1−1
Eα1,2α1

[
− λk

2

pα1
(T p − τ p)α1

]
fk(τ)d(τ

p).

If ∆k ̸= 0, then we can find τk, φk, ψk unknowns uniquely.

First we show that ∆k ̸= 0 for sufficiently large k. For this intention

we use the Lemma 1.4.5 obtained from the properties of Wright-type function

studied by A. Pskhu in [86].

By using the Lemma 1.4.5, we can calculate the behavior of ∆k at k → ∞:

lim
k→+∞

∆k = lim
|z1|→+∞

m∑
i=1

ζi
[
Eδ2,1(z1) +

1

Γ(α1)pα1
z1Eδ2,2(z1)

]
−

− lim
|z2|→+∞

Eα1,1(z2) =
m∑
i=1

ζi
Γ(α1)pα1Γ(2− δ2)

,

where z1 = −λ2k(−ξi), z2 = − λ2k
pα1T

α1p, λk = πk − π
4 .

If
m∑
i=1

ζi
Γ(α1)pα1Γ(2− δ2)

> 0 and from the last equality it is seen that

∆k > 0 for sufficiently large k.

3.2.3 Uniqueness of the solution

In order to show the uniqueness of the solution, it is enough to prove that

homogeneous problem has a trivial solution.

Let us first consider the following integral

uk(t) =
2

J2
1 (λk)

1∫
0

xu(x, t)J0(λkx)dx, k = 1, 2, 3, ...., (3.2.28)
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Then we introduce another function based on (3.2.28)

vε(t) =
2

J2
1 (λk)

1−ε∫
ε

xu(x, t)J0(λkx)dx, k = 1, 2, 3, ...., (3.2.29)

Applying C
(
tθ ∂∂t

)α1

andD
(α2,β2)µ
0− to (3.2.29) and using the equation (3.2.1)

in homogeneous case with respect to t yield

C
(
tθ
∂

∂t

)α1

vε(t) =
2

J2
1 (λk)

1−ε∫
ε

C
(
tθ
∂

∂t

)α1

u(x, t)xJ0(λkx)dx =

=
2

J2
1 (λk)

1−ε∫
ε

[
uxx(x, t) +

1

x
ux(x, t)

]
xJ0(λkx)dx =

−2λ2k
J2
1 (λk)

1−ϵ∫
ϵ

u(x, t)xJ0(λkx)dx,

D
(α2,β2)µ
0− vε(t) =

2

J2
1 (λk)

1−ε∫
ε

D
(α2,β2)µ
0− u(x, t)xJ0(λkx)dx =

=
2

J2
1 (λk)

1−ε∫
ε

[
uxx(x, t) +

1

x
ux(x, t)

]
xJ0(λkx)dx =

−2λ2k
J2
1 (λk)

1−ϵ∫
ϵ

u(x, t)xJ0(λkx)dx

and integrating by parts twice the right sides of the equalities on t ∈ (0, T ) and

t ∈ (−T, 0), respectively, and passing to the limit on ε→ +0 yield C
(
tθ ddt

)α1

uk(t) + λ2uk(t) = 0, t > 0,

D
(α2,β2)µ
0− uk(t) + λ2uk(t) = 0, t < 0.

(3.2.30)

Considering conditions in (3.2.21), (3.2.22) in homogeneous case, (3.2.30)

has a solution uk(t) = 0 if ∆k ̸= 0. Then from (3.2.28) and the completeness

of the system Xk(x) in the space L2(0, 1), u(x, t) ≡ 0 in Ω. This completes the

prove of uniqueness of the solution of the main problem.
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3.2.4 Existence of the solution

In the below, we present the necessary conditions for given data to show the

existence result by using well-known lemma about the upper bound of the

Mittag-Leffler function and the theorem related to Fourier-Bessel series.

First, by considering above Lemma 1.4.1 and Theorem 3.2.2, we show the

upper bound of Gk(t):

| Gk(t) |≤
t∫

0

|tp − τ p|α1−1|fk(τ)|d(τ p)+

+
λ2k
p2α1

t∫
0

|tp − τ p|2α1−1|Eα1,2α1

[
− λ2k
pα1

(tp − τ p)α1
]
||fk(τ)|d(τ p) ≤

1

pα1Γ(α1)

t∫
0

|tp − τ p|α1−1 M

λk
7/2
d(τ p) +

λ2k
p2α1

t∫
0

pα1|tp − τ p|2α1−1M ∗

pα1 + λ2k|tp − τ p|α1

M

λk
7/2
d(τ p) ≤

[ M

λk
7/2pα1Γ(α1)

+
M ∗M

pα1λk
7/2

] t∫
0

|tp − τ p|α1−1d(τ p) ≤

1

λk
7/2

[ M

pα1Γ(α1)
+
M ∗M

pα1

] |t|α1p

α1
≤ M1

λk
7/2

|t|α1p ≤ M1

λk
7/2

|T |α1p,

where

M1 =
M

pα1Γ(α1 + 1)
+
M ∗M

α1pα1
.

By using the last inequality, Lemma 1.4.1 and Theorem 3.2.2, we can

write the upper bound of Fk:

|Fk| ≤ |Gk(T )|+
m∑
i=1

ζi

0∫
ξi

|s− ξi|δ2−γ2+1|Eδ2,δ2−γ2+2(−λk2(s− ξi)
δ2)||fk(s)|ds ≤

≤ M1T
α1p

λk
7/2

+
m∑
i=1

ζi

0∫
ξi

|s− ξi|δ2−γ2+1 M ∗

1 + λ2k|s− ξi|δ2
M

λ
7/2
k

ds ≤
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≤ M1T
α1p

λk
7/2

+
m∑
i=1

ζi

0∫
ξi

|s− ξi|1−γ2
MM ∗

λ
11/2
k

≤ M1T
α1p

λk
7/2

+
m∑
i=1

ζi
(−ξi)2−γ2
(2− γ2)

MM ∗

λ
11/2
k

≤,

≤ M2

λ
7/2
k

, M2 =M1T
α1p +

m∑
i=1

ζiMM ∗(−ξi)2−γ2
(2− γ2)λk

2 ,

or

|Fk| ≤
M2

λ
7/2
k

, (3.2.31)

Now considering (3.2.31) and assuming ∆k ̸= 0 then, we write upper

bounds of τk, φk, ψk in (3.2.26) and (3.2.27).

|τk| = |φk| ≤ | 1
∆k

||Fk| ≤
M2

|∆k|λ7/2k

, (3.2.32)

|ψk| =
∣∣∣ −λ2k
pα1Γ(α1)

∣∣∣∣∣∣Fk
∆k

∣∣∣ ≤ M2

pα1Γ(α1)|∆k|λ3/2k

. (3.2.33)

For proving the existence of the solution, we need to show uniform con-

vergence of series representations of u(x, t), ux(x, t), uxx(x, t),
C
(
tθ ∂∂t
)α
u(x, t)

and D
(α2,β2)µ
0− u(x, t) by using the solutions (3.2.23) and (3.2.24) in Ω1 and Ω2

respectively.

According to the last inequality (3.2.32) and Theorem 3.2.2, then we can

present the existence of the solutions in both domains.

|u(x, t)| ≤
∞∑
k=1

|uk(t)||J0(λkx)| ≤
∞∑
k=1

|uk(t)| ≤

∞∑
k=1

[
|τk||Eα1,1(−

λ2k
pα1

tα1p)|+ |Gk(t)||
]
≤

≤
∞∑
k=1

( pα1

pα1 + λk
2|tpα1|

M2

|∆k|λ7/2k

+
M1T

α1p

λk
7/2

)
.

One can shows that the series representation of u(x, t) is bounded by conver-

gent numerical series and by Weierstrass M-test, the series of u(x, t) converges

uniformly in Ω1.
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Now we remind some properties of Bessel functions [110]:

J ′
0(x) = −J1(x); 2J ′

1(x) = J0(x)− J2(x)

and asymptotic formula |Jp(λkx)| ≤
2A√
λkx)

, p > −1/2, A = const.

It is not difficult to see that the series representation of uxx(x, t) is bigger

than ux(x, t) hence it is enough to show the uniform convergence of uxx(x, t).

By using these properties we have

|uxx(x, t)| ≤
∞∑
k=1

|uk(t)|
∣∣∣ d2
dx2

J0(λkx)
∣∣∣ = ∞∑

k=1

|uk(t)|
λ2k
2

∣∣∣J2(λkx)− J0(λkx)
∣∣∣

And as a similar way of u(x, t) we can show that

|uxx(x, t)| ≤
∞∑
k=1

( pα1

pα1 + λk
2|tpα1|

M2

|∆k|λ7/2k

+
M1T

α1p

λk
7/2

) 2A√
λkx)

.

From the last inequality we can see that the series representation of

uxx(x, t) is bounded by convergent series. According to Weierstrass M-test,

the series of uxx(x, t) converges uniformly in Ω1.

The uniform convergence of C
(
tθ ∂∂t
)α
u(x, t) which is defined as

C

(
tθ
∂

∂t

)α
u(x, t) = uxx(x, t)−

1

x
ux(x, t) + f(x, t)

is similar to the way of showing convergence of the series representation of

uxx(x, t).

Most fundamental result of mixed type equation presented by Chaplygin

which is closely connected with the theory of gas flow.

In Ω2 domain it is enough to show the uniform convergence of uxx(x, t)

which is bigger than other series. Hence the convergence of the series of

u(x, t), ux(x, t), D
(α2,β2)µ
0− u(x, t) can be derived from the uniform convergence

of uxx(x, t).
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From Theorem 3.2.2 and Lemma 1.4.1, in Ω2 we can have

|uxx(x, t)| ≤
∞∑
k=1

|uk(t)|
λ2k
2

∣∣∣J2(λkx)− J0(λkx)
∣∣∣ ≤

∞∑
k=1

λ2k|φk||(−t)γ2−2||Eδ2,γ2−1(−λ2k(−t)δ2)|+

+
∞∑
k=1

λ2k|ψk||(−t)γ2−1||Eδ2,γ2(−λ2k(−t)δ2)|+

+∞∑
k=1

λ2k

0∫
t

|z − t|δ2−1|Eδ2,δ2[−λ2k(z − t)δ2]||fk(z)|dz ≤

≤
∞∑
k=1

[ λ2kM2

|∆k|λ7/2k

|(−t)γ2−2|M ∗

1 + λ2k|(−t)δ2|
+

λ2kM2

|∆k|λ3/2k pα1Γ(α1)

|(−t)γ2−1|M ∗

1 + λ2k|(−t)δ2|

]
+

+
+∞∑
k=1

λ2k

0∫
t

|z − t|δ2−1 M ∗

1 + λ2k|(z − t)δ2|
M

λ
7/2
k

dz ≤

∞∑
k=1

1

λ
3/2
k

[
M2M

∗T γ2−2

|∆k|(1 + λk
2T δ2)

+
M2M

∗T γ2−δ2−1

|∆k|
+

+
MM ∗ ln(1 + λ2kT

δ2)

δ2λ2k

]
≤

∞∑
k=1

M3

λ
3/2
k

where lim
λk→∞

ln(1+λ2kT
δ2)

δ2λ2k
< ∞ according to l’Hopital’s rule. It can be seen that

the series representation of uxx(x, t) is bounded by convergent numerical series

and due to Weierstrass M-test, the series of uxx(x, t) converges uniformly in Ω2

Using (3.2.32), (3.2.33) and Theorem 3.2.2, Lemma 1.4.1, we can show

the uniform convergence of u(x, t), ux(x, t), and D
(α2,β2)µ
0− u(x, t) in a similar

method used for uxx(x, t) in Ω2.

Finally, we have proved the uniqueness and existence of the solution to

the considered problem as stated in the following theorem.

Theorem 3.2.4. Let ∆k ̸= 0 and
m∑
i=1

ζi
Γ(α1)pα1Γ(2− δ2)

> 0, and also the
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following conditions hold for Iδ0−f(x, ·) ∈ AC2[−T, 0−] and f(x, ·) ∈ Cµ[0+, T ]

such that

• f(0, t) = f ′x(0, t) = .... = f ′′′x (0, t) = 0;

• f(1, t) = f ′x(1, t) = f ′′x (1, t) = 0;

• ∂4

∂x4f(x, t) is bounded;

then, there exist the unique solution of the considered problem which is repre-

sented by

u(x, t) =
∞∑
k=1

Uk(t)J0(λkx)

where

Uk(t) =



τkEα1,1

(
− λk

2

pα1
tpα1

)
+Gk(t), t > 0,

φk(−t)γ2−2Eδ2,γ2−1[−λ2k(−t)δ2]− ψk(−t)γ2−1Eδ2,γ2[−λ2k(−t)δ2]+

+

0∫
t

(z − t)δ2−1Eδ2,δ2[−λ2k(z − t)δ2]fk(z)dz, t < 0,

here p = 1− θ and

Gk(t) =
1

pα1Γ(α1)

∫ t

0

(
tp − τ p

)α1−1
fk(τ)d(τ

p)−

− λk
2

p2α1

∫ t

0

(
tp − τ p

)2α1−1
Eα1,2α1

[
− λk

2

pα1
(tp − τ p)α1

]
fk(τ)d(τ

p).

3.3 On the nonlocal problem in time for mixed PDE in-

volving time fractional wave and subdiffusion equa-

tions

In this section we analyze the hybrid nonlocal boundary-value problem made

by combining two different elements of the problems considered in the sections
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3.1 and 3.2. Detailed information about this investigation has been published

[121] in the journal of Uzbek Mathematical Journal .

In the present work, we consider the following mixed PDE with fractional

subdiffusion and fractional wave equation in both parts of the domain involving

bi-ordinal Hilfer derivative:

f(x, t) =

 L1u ≡ D
(α1,β1)µ1

0+ u(x, t)− uxx(x, t), t > 0

L2u ≡ D
(α2,β2)µ2

0− u(x, t)− uxx(x, t), t < 0
(3.3.1)

in mixed domain Ω = Ω1 ∪ Ω2 ∪ AB.

Where f(x, t) is a given function, i− 1 < αi, βi < i, 0 ≤ µi ≤ 1, i = 1, 2,

Ω1 = {(x, t) : 0 < x < l, 0 < t < T}, Ω2 = {(x, t) : 0 < x < l, −T < t < 0},

T > 0, AB = {(x, t) : 0 < x < l, t = 0},

Nonlocal BVP for Eq.(3.3.1) in Ω can be formulated as follows:

Problem B. Find a solution u(x, t) of equation (3.3.1) which is subject

to the following regularity conditions

t1−γ1u(x, t), t1−γ1D
(α1,β1)µ1

0+ u(x, t) ∈ C(Ω1), (−t)2−γ2u(x, t) ∈ C(Ω2),

(−t)2−γ2D(α2,β2)µ2

0− u(x, t) ∈ C(Ω2), uxx ∈ C(Ω1 ∪ Ω2),

submitted to the boundary conditions

u(0, t) = 0, u(l, t) = 0, t ∈ [−T, 0) ∩ (0, T ] (3.3.2)

and non-local condition

u(x,−T ) = u(x, T ) + ψ(x), 0 ≤ x ≤ l, (3.3.3)

and also it satisfies the conjugation conditions on AB

lim
t→+0

I1−γ10+ u(x, t) = lim
t→−0

I2−γ20− u(x, t), 0 ≤ x ≤ l, (3.3.4)

lim
t→+0

t1−δ1
(
∂
∂tI

1−γ1
0+ u(x, t)

)
= lim

t→−0

∂
∂tI

1−γ2
0− u(x, t) 0 < x < l. (3.3.5)
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where γi = βi + µi(i − βi) δi = βi + µi(αi − βi), (i = 1, 2), ψ(x) is a given

function such that ψ(0) = ψ(l) = 0.

We note works of A. Pskhu [88], [89] where main boundary value problems

for diffusion-wave equation with the Riemann-Liouville fractional derivative

were investigated by the method of Green’s functions.

3.3.1 Investigation of Problem

First let us introduce the following new notations

τ(x) = lim
t→+0

I1−γ10+ u(x, t), 0 ≤ x ≤ l, (3.3.6)

φ(x) = lim
t→−0

I2−γ20− u(x, t), 0 ≤ x ≤ l, (3.3.7)

ν(x) = lim
t→−0

∂

∂t
I2−γ20− u(x, t), 0 < x < l. (3.3.8)

For solving the problem we use the method of separation of variables for

homogeneous equation corresponding (3.3.1) along with the conditions (3.3.2)

and we obtain the same spectral problem as given in the section 3.1 whose its

eigenvalues and eigenfunctions are in the following forms

λn =
(nπ
l

)2
, Xn(x) = sin(

√
λnx), n = 1, 2, 3, ... (3.3.9)

The system of Xn(x) in the form (3.3.9 is the orthogonal basis in L2(0, l)

[79], for that reason we can represent the solution u(x, t) and the given function

f(x, t) in the form of series expansions as follows

u(x, t) =
∞∑
n=1

un(t) sin(
√
λnx) (3.3.10)

and

f(x, t) =
∞∑
n=1

fn(t) sin(
√
λnx), (3.3.11)
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where

fn(t) =
2

l



t∫
0

f(x, t) sin(
√
λnx)dx, t > 0,

0∫
t

f(x, t) sin(
√
λnx)dx, t < 0.

(3.3.12)

Substituting (3.3.10) and (3.3.11) into the equation (3.3.1) along with the

conditions (3.3.6), (3.3.7) and (3.3.8) we obtain the problem for the ordinary

fractional differential equations in Ω1 and Ω2 respectively.

The ordinary fractional differential equation with respect to t correspond-

ing Eq.(3.3.1) has been studied in [18] for t > 0. Hence, we can write the solution

of the Eq.(3.3.1) in Ω1 which satisfies conditions (3.3.2), (3.3.6) as follows:

u(x, t) =
+∞∑
n=1

[
τnt

γ1−1Eδ1,γ1(−λntδ1)+

+

t∫
0

(t− s)δ1−1Eδ1,δ1

[
−λn(t− s)δ1

]
fn(s)ds

]
sin(

√
λnx), (3.3.13)

where λn =
(
nπ
l

)2
.

Using representations (3.3.13), we evaluate t1−δ1
(
I1−γ10+ u(x, t)

)
t
:

t1−δ1
(
I1−γ10+ u(x, t)

)
t
= t1−δ1

∞∑
n=1

[
d

dt
τnEδ1,1(−λntδ1)+

+
d

dt

t∫
0

(t− s)2δ1−1Eδ1,δ1−γ1+1[−λn(t− s)δ]fn(s)ds

]
sin(

√
λnx) =

= t1−δ1
∞∑
n=1

(
−λnτntδ1−1Eδ1,1(−λntδ1)− f(0)t2δ1−1Eδ1,δ1−γ+1(−λtδ1)

)
sin(

√
λnx)−

−t1−δ1
∞∑
n=1

 t∫
0

(t− s)2δ1−1Eδ1,δ1−γ1+1[−λn(t− s)δ]f ′n(s)ds

 sin(
√
λnx).
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3.3. On a nonlocal problem in time for fractional mixed PDE

According to the above evaluation, we can calculate the limit

lim
t→+0

t1−δ1
(
I1−γ0+ u(x, t)

)
t
=

∞∑
n=1

(−λn)τn sin(
√
λnx), 0 < x < l. (3.3.14)

Considering notations (3.3.6), (3.3.7) and conjugation condition (3.3.4),

as such from (3.3.8), (3.3.14) and conjugation condition (3.3.5), we obtain the

following linear equations: 
τn = φn,

− λnτn
Γ(δ1)

= νn,
(3.3.15)

where τn, φn and νn are Fourier coefficients of the unknown functions τ(x), φ(x)

and ν(x) respectively.

Now we will establish another functional relation which is determine from

(3.3.3). For this aim, we need the solution of the problem intended to solve

L2u = 0 equation with the conditions (3.3.7), (3.3.8). After applying method

of separation variables, we have spectral problem which its eigenvalues and

eigenfunctions as given in (3.3.9) and the problem (3.2.22) considered in the

section 3.2 for ordinary differential equation involving the right-sided bi-ordinal

Hilfer fractional differential operator.

According to Lemma 3.2.1 and (3.3.9) we can write the solution of L2u = 0

satisfying (3.3.2), (3.3.7), (3.3.8) conditions as follows:

u(x, t) =
+∞∑
n=1

[
φn(−t)γ2−2Eδ2,γ2−1[−λn(−t)δ2]− νn(−t)γ2−1Eδ2,γ2[−λn(−t)δ2]+

+

0∫
t

(z − t)δ2−1Eδ2,δ2[−λn(z − t)δ2]fn(z)dz

]
sin(

√
λnx) (3.3.16)

By considering (3.3.10) and (3.3.11) we substite (3.3.13) and (3.3.16) into
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3.3. On a nonlocal problem in time for fractional mixed PDE

(3.3.3) we deduce that

ψn = φnT
γ2−2Eδ2,γ2−1

(
−λnT δ2

)
− νnT

γ2−1Eδ2,γ2(−λnT δ2)+

+

0∫
−T

(z + T )δ2−1Eδ2,δ2(−λ(z + T )δ2)fn(z)dz − τnT
γ1−1Eδ1,γ1(−λT δ1)

−
T∫

0

(T − z)δ1−1Eδ1,δ1(−λn(T − z)δ1)fn(z)dz, (3.3.17)

where φn is a Fourier coefficient of φ(x), i.e,

ψn =
2

l

l∫
0

ψ(x) sin (
√
λnx)dx

From the system of equations (3.3.15), (3.3.17), one can determine

τn, φn, νn unknowns in the following forms

τn =
1

∆n
(ψn + Fn), (3.3.18)

νn =
−λn
∆n

(ψn + Fn), (3.3.19)

φn =
1

∆n
(ψn + Fn), (3.3.20)

where

∆n = T γ2−2Eδ2,γ2−1

(
−λnT δ2

)
+

+
λnT

γ2−1

Γ(δ1)
Eδ2,γ2(−λnT δ2)− T γ1−1Eδ1,γ1(−λT δ1), (3.3.21)

Fn =

T∫
0

(T − z)δ1−1Eδ1,δ1(−λn(T − z)δ1)fn(z)dz−

−
0∫

−T

(z + T )δ2−1Eδ2,δ2(−λn(z + T )δ2)fn(z)dz.
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3.3. On a nonlocal problem in time for fractional mixed PDE

3.3.2 The uniqueness of solution

We assume that there exist two different u1(x, t) and u2(x, t) solutions of the

main problem. Then it is enough to show that u(x, t) = u1(x, t)− u2(x, t) is a

trivial solution of the homogeneous problem.

Let u(x, t) be a solution of the homogeneous problem.

Let us first consider the following integral

un(t) =

1∫
0

u(x, t) sin(
√
λnx)dx, n = 1, 2, 3, ...., (3.3.22)

Then we introduce another function based on (3.3.22)

vεn(t) =

1−ε∫
ε

u(x, t) sin(
√
λnx)dx, n = 1, 2, 3, ...., (3.3.23)

Applying D
(α1,β1)µ1

0+ and D
(α2,β2)µ2

0− to (3.3.23) and using the equation(3.3.1)

D
(α1,β1)µ1

0+ vε(t) = −2

1−ε∫
ε

D
(α1,β1)µ1

0+ u(x, t) sin(
√
λnx)dx =

= −2

1−ε∫
ε

uxx(x, t) sin(
√
λnx)dx

D
(α2,β2)µ2

0− vε(t) = −2

1−ε∫
ε

D
(α2,β2)µ2

0− u(x, t) sin(
√
λnx)dx =

= −2

1−ε∫
ε

uxx(x, t) sin(
√
λnx)dx

and integrating by parts twice the right sides of the equalities on t ∈ (0, T ) and

t ∈ (−T, 0), respectively, and passing to the limit on ε→ +0 yield D
(α1,β1)µ1

0+ un(t) + λ2un(t) = 0, t > 0,

D
(α2,β2)µ2

0− un(t) + λ2un(t) = 0, t < 0.
(3.3.24)
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3.3. On a nonlocal problem in time for fractional mixed PDE

Considering conditions (3.3.6), (3.3.7), (3.3.8) in homogeneous case,

(3.3.24) has a solution un(t) = 0 if ∆n ̸= 0 in (3.3.21). Then from (3.3.22)

and the completeness of the system {Xn(x)} in the space L2(0, l), u(x, t) ≡ 0

in Ω. This completes the prove of uniqueness of the solution of Problem B.

3.3.3 The existence of solution

First of all, we prove that ∆n ̸= 0 for sufficiently large n. Considering Lemma

1.4.5 we can show

lim
n→+∞

∆n = lim
λn→+∞

∆n = lim
|z1|→+∞

(
T γ2−2Eδ2,γ2−1(z1)−

T γ2−1−δ2

Γ(δ1)
Eδ2,γ2(z1)

)
−

− lim
|z2|→+∞

T γ1−1Eδ1,γ1(z2) =
T γ2−δ2−1

Γ(δ1)Γ(γ2 − δ2)
> 0.

In other words, it confirms that ∆n > 0 for any sufficiently large n.

For showing the existence of the result, we prove the uniform convergence

of the series of u(x, t), uxx(x, t) and D
(αi,βi)µi

0± u(x, t), i = 1, 2.

Second of all, we get the estimates of the function u(x, t) in Ω1 with the

help of Lemma 1.4.1:

|t1−γ1u(x, t)| ≤
∞∑
n=1

|τn|Eδ1,γ1(−λntδ1)|+

+
∞∑
n=1

t1−γ1

t∫
0

|t− s|δ1−1|Eδ,δ1[−λn(t− s)δ1]||fn(s)|ds =

=
∞∑
n=1

|τn|Eδ1,γ1(−λntδ1)|+ |fn(0)||t|δ1|Eδ1,δ1+1(−λntδ1)|+

+
∞∑
n=1

|t|1−γ1
t∫

0

|t− s|δ1|Eδ,δ1+1[−λn(t− s)δ1]||f ′n(s)|ds =

≤
∞∑
n=1

 |τn||M
1 + λn|tδ1|

+
|fn(0)||t|δ1+1−γ1

1 + λn|t|δ1
+ T 1−γ1

t∫
0

|t− s|δ1M
1 + λn|t− s|δ1

|f ′n(s)|ds

 .
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3.3. On a nonlocal problem in time for fractional mixed PDE

If τ(x) ∈ C [0, l], τ ′(x) ∈ L2(0, l) and f(x, t) ∈ C0,1[0, l]× [0, T ], then the series

of u(x, t) is bounded with convergent numerical series. Note that the condition

τ ′(x) ∈ L2(0, l) is required for t → +0. From Weierstrass M-test the series of

u(x, t) is considered uniformly convergent in Ω1.

As such for estimate u(x, t) in Ω2 after integrating by parts

|(−t)2−γ2u(x, t)| ≤
+∞∑
n=1

(
φn

∣∣∣Eδ2,γ2−1[−λn(−t)δ2]
∣∣∣+ νn| − t|

∣∣∣Eδ2,γ2[−λn(−t)δ2]
∣∣∣)+

+
∞∑
n=1

| − t|2−γ2+δ2|fn(0)||Eδ2,δ2+1(−λn(−t)δ2)|+

+
∞∑
n=1

| − t|2−γ2
0∫
t

|z − t|δ2
∣∣∣Eδ2,δ2+1[−λn(z − t)δ2]

∣∣∣|f ′n(z)|dz =
≤

∞∑
n=1

(
φnM

1 + λn| − t|δ2
+

νn| − t|M
1 + λn| − t|δ2

)
+

+
∞∑
n=1

 |fn(0)|| − t|δ2M
1 + λn| − t|δ2

+ T 2−γ2

0∫
t

|z − t|δ2M
1 + λn|z − t|δ2

|f ′n(z)|dz

 .

If φ(x), ν(x) ∈ C[0, l], φ(x), ν(x) ∈ L2(0, l) and f(x, t) ∈ C0,1[0, l] ×

[−T, 0], then the series of u(x, t) is bounded with convergent numerical series

with respect to n and from Weierstrass M-test the series of u(x, t) converges

uniformly in Ω2.

Next, we show the uniform convergence of the series representation of

uxx(x, t), which is given by in Ω1

uxx(x, t) = −
∞∑
n=1

λnτnt
γ1−1Eδ1,γ1(−λntδ1)−

−
∞∑
n=1

λn

t∫
0

(t− s)δ1−1Eδ1,δ1

[
−λn(t− s)δ1

]
fn(s)ds sin(

√
λnx),
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3.3. On a nonlocal problem in time for fractional mixed PDE

and as such given in Ω2

uxx(x, t) = −
∞∑
n=1

λnφn(−t)γ2−2Eδ2,γ2−1[−λn(−t)δ2] sin(
√
λnx)+

+
∞∑
n=1

λnνn(−t)γ2−1Eδ2,γ2[−λn(−t)δ2] sin(
√
λnx)−

−
∞∑
n=1

λn

0∫
t

(z − t)δ2−1Eδ2,δ2[−λn(z − t)δ2]fn(z)dz sin(
√
λnx).

To get rid of singularity in the integral we integrate by parts and consid-

ering Lemma 1.4.1 we have the following estimates t > 0

|uxx(x, t)| ≤
∞∑
n=1

(
|τ2n||t|γ1−1|M
1 + λn|tδ1|

+

+
|f2n(0)||t|δ1
1 + λn|t|δ1

+

t∫
0

|t− s|δ1M
1 + λn|t− s|δ1

|f ′2n(s)|ds

)
,

and as such for t < 0

|uxx(x, t)| ≤
∞∑
n=1

(
λnφn| − t|γ2−2

1 + λn| − t|δ2
+
λnνn| − t|γ2−1

1 + λn| − t|δ2

)
+

+
∞∑
n=1

 |f2n(0)|| − t|δ2M
1 + λn| − t|δ2

+

0∫
t

|z − t|δ2M
1 + λn|z − t|δ2

|f ′2n(s)|ds

 ,

where τn =
τ2n
λn

, φn =
φ2n

λn
, νn =

ν2n
λn

,

f2n(t) =
2

l


t∫
0

fxx(x, t) sin(
√
λnx)dx, t > 0,

0∫
t

fxx(x, t) sin(
√
λnx)dx, t < 0.

If f(x, t) ∈ C2,1(0, l) × (−T, T ) and τ(x), φ(x), ν(x) ∈ C2(0, l) and

τ ′′′(x), φ′′′(x), ν ′′′(x) ∈ L2(0, l) which are required for t → 0, then, the series

representation of uxx(x, t) is bounded with the convergent numerical series and

from Weierstrass M-test the series of uxx(x, t) converges uniformly in Ω1 ∪ Ω2.
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3.3. On a nonlocal problem in time for fractional mixed PDE

Finally, the uniform convergence of the series representation of

D
(αi,βi)µi

0± u(x, t), i = 1, 2 can be done similarly to the convergence of the se-

ries of uxx(x, t) considering Eq.(3.3.1).

Moreover, according to (3.3.18)-(3.3.20) we can see that τ(x), φ(x) and

ν(x) functions are written in terms of the given functions ψ(x) and f(x, t). For

that reason we write sufficient conditions for those given functions in order to

show that all imposed conditions for τ(x), φ(x) and ν(x) are valid, i.e

τ(x), φ(x), ν(x) ∈ C[0, l], τ(x), φ(x), ν(x) ∈ C2(0, l) and

τ ′′′(x), φ′′′(x), ν ′′′(x) ∈ L2(0, l), f(x, t) ∈ C[0, l]× [−T, T ],

f(x, t) ∈ C2,1(0, l)× (−T, T ).

If we find sufficient conditions for given functions in order to show the validity

conditions of ν(x), it can be clearly seen that those sufficient conditions can

be considered enough for showing that conditions for τ(x), φ(x) are also valid

automatically. Hence we have the following equality from (3.3.19)

νn =
−λn
∆n

(ψn + Fn) = − 1

∆nλn
√
λn
ψ5n −

1

∆nλn
√
λn
F3n,

Since the given functions can be written in the form of a Fourier series and the

last equality we have the following conditions for the given functions

ψ(x) ∈ C[0, l] ∩ C4(0, l) and ψ(5)(x) ∈ L2(0, l),

f(x, t) ∈ C[0, l]× [−T, T ] ∩ C2,1(0, l)× (−T, T ) and f (3)x (·, t) ∈ L2(0, l),

where we assume that ∆n ̸= 0, ψ(0) = ψ(l) = 0, ψ′′(0) = ψ′′(l) = 0, ψ(4)(0) = 0,

ψ(4)(l) = 0, f(0, t) = f(l, t) = fxx(0, t) = fxx(l, t) = 0 and we have used the

following inequality

2| 1

∆n

√
λn
ψ5n| ≤

1

∆2
nλn

+ |ψ5n|2,
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3.3. On a nonlocal problem in time for fractional mixed PDE

and Parseval’s identity
∞∑
n=1

|ψ5n|2 = ∥ψ(5)∥2,

ψ(5)
n =

2

l

l∫
0

ψ(5)(x) sin(
√
λnx)dx,

F3n =

T∫
0

(T − z)δ1−1Eδ1,δ1(−λn(T − z)δ1)f3n(z)dz−

−
0∫

−T

(z + T )δ2−1Eδ2,δ2(−λn(z + T )δ2)f3n(z)dz,

|F3n(t)| ≤ |f3n(0+)| MT δ1

1 + λnT δ1
+

T∫
0

|T − z|δ1 M

1 + λn|T − z|δ1
|f ′3n(z)|dz+

+|f3n(0−)|T δ2 M

1 + λnT δ2
+

0∫
−T

|z + T |δ2 M

1 + λnT δ2
|f ′3n(z)|dz,

where

f3n(t) =
2

l

l∫
0

f (3)x (x, t) cos(
√
λnx)dx.

f3n(0) =
2

l

l∫
0

f (3)x (x, 0) cos(
√
λnx)dx.

All in all, we have just proved the following theorem.

Theorem 3.3.1. Assume that the following conditions hold:

∆n ̸= 0; ψ(x) ∈ C[0, l] ∩ C4(0, l) such that ψ(0) = ψ(l) = 0, ψ′′(0) =

ψ′′(l) = 0, ψ(4)(0) = ψ(4)(l) = 0 and ψ(5)(x) ∈ L2(0, l);

f(x, t) ∈ C[0, l]×[−T, T ]∩C2,1(0, l)×(−T, T ) such that f(0, t) = f(l, t) =

0, fxx(0, t) = fxx(l, t) = 0, f
(3)
x (·, t) ∈ L2(0, l);

then, there exists the unique solution of the considered problem.
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Conclusion of the Chapter 3

Conclusion of the Chapter 3

In section 3.1, the unique solvability of boundary value problem for mixed type

partial differential equation is considered. As an interesting target for studying

the boundary-value problems for mixed hyperbolic-parabolic type equations, it

has been arising the necessity to generalize these kinds of problems. At the

same time, while generalizing these problems by using fractional derivatives it

is also important to use a more general definition of fractional differentiation.

In this section, we investigated the boundary-value problem with consideration

of both concerns aforementioned above.

We also generalized the results given in [5] by presenting a more general

definition of regularized Caputo-like counterpart hyper-Bessel fractional differ-

ential operator at arbitrary starting point. Furthermore, the connection was

established between the given data and the uniqueness and existence of the

solution.

In section 3.2, we dealt with studying the nonlocal problem for the mixed

type equation involving subdiffusion equation with regularized Caputo-like

counterpart of hyper-Bessel differential operator and fractional wave equation

with the bi-ordinal Hilfer’s derivative. Through the properties Fourier-Bessel

series and Mittag-Leffler function, the necessary conditions are found for the

existence and uniqueness of the solution.

A distinctive side of this work than investigated in the Section 3.1 is that

we consider the regularized Caputo-like counterpart of hyper-Bessel fractional

differential operator which starting point is zero and the wave equation is gener-

ated the right-hand sided bi-ordinal Hilfer fractional derivative. Moreover, the

nonlocal condition is used which expresses the equalization of summation of the

values of Rieman-Liouville integrals of unknown function at discrete points of

time to the value of this function at the final time.
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Conclusion of the Chapter 3

The section 3.3 is presented as a combination of the sections 3.1 and 3.2.

More precisely, the subdiffusion and fractional wave equations are generated by

using the fractional bi-ordinal Hilfer derivative and non-homogeneous nonlocal

condition is also used. We admit that by taking strict conditions for given data

for showing the existence result we aimed to get away from singularities near

zero. By the similar techniques applied in those sections the unique solvability

of the nonlocal problem is investigated.
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Chapter 4

Direct and inverse problems for the

pseudo-parabolic equation with the

bi-ordinal Hilfer fractional derivative

This chapter is devoted to study of some direct and inverse problems for the

fractional pseudo-parabolic equations. Pseudo-parabolic equations are distin-

guished by the presence of a time derivative in the highest-order term and

describe a variety of important physical processes. For example, the pseudo-

parabolic equation is studied in the model which describes the energy of the

isotropic material [21]. A concept regarding a non-simple material for which

the conductive temperature and the thermodynamic temperature do not coin-

cide. The non-stationary processes in semiconductors in the presence of sources

can be analyzed by the pseudo-parabolic equation [117] and the filtration of the

two-phase flow in porous media with the dynamic capillary pressure [11]. In [10]

unique solvability of systems of time-fractional order pseudo-differential equa-

tions was concerned which can be modeled the various dynamical processes.

When it comes to the studying PDEs with degeneration, one can show the

various methods which are applicable to use. For example, in [103] the initial

boundary value problem is considered for the nonlinear degenerate parabolic
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equation with second order Volterra operator and the semi-discretization in

time helps to use Rothe’s method for finding approximate solution which has a

application in the porous media equation and the integro-differential equation

modeling memory effects.

Finding an effective and convenient methods for solving fractional partial

differential equations (PDEs) is also an interesting part of the research among

their applications. For example, in [116] it was noted the typical behaviour

of the solution and explored which type of measurement is suited to recover,

in a unique way, a space-dependent source f(x). Most of the time the certain

aspects of the equations and the properties of the fractional order derivative

allow us to choose the methods to solve the problems. For example, the series

method is often used to solve PDEs with any arbitrary order of derivatives

and in this problem, it can be divided into two problems of solving ordinary

differential equations.

Modeling the phenomena in physics or engineering often requires to study

fractional order partial differential equation with variable coefficients. For ex-

ample, in [6] authors considered fractional PDEs with the space-dependent

coefficient and analyzed the uniqueness and existence of the solution with help

of properties of the Legendre polynomials.

This chapter is based on the article [124], which was published in the

journal International Journal of Applied Mathematics.
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4.1. Uniqueness and existence of solution for fractional Langevin type PDE

4.1 Unique solvability of the boundary value problem

for the fractional Langevin-type partial differential

equation

In physics, fractional order of Langevin equation plays an important role as

a more detailed description of Brownian motion (See [95], sect. 15.5). When

we consider the concept of the diffusion process which is associated with the

random motion of particles in space, we see that normal diffusion and Brownian

motion are related to the Langevin equation. The classical Langevin equation,

in particular, by means of Newton’s law treats the dynamics of a Brownian

particle by combining the influence of Stokes fluid friction and temperature

changes in the particle’s proximity into a random force with appropriately as-

signed parameters.

Despite several other applications, it can be said that the Langevin equa-

tion itself is attractive too and many various differential equations have been

considered in recent years. Langevin equation and the idea of further develop-

ment and generalization of [6] were key motivation to investigate the present

work. In addition to the physical application of this equation, we have focused

on the unique solvability of the problem and the sufficient conditions for the

existence of the solution.

In the current section, we are interested in investigating the following

space-degenerate PDE

D
(α1,β1)µ1

0+

(
D

(α2,β2)µ2

0+ u(x, t)− ∂

∂x

[
(1− x2)ux(x, t)

])
= f(x, t) (4.1.1)

in the domain Ω = {(x, t) : −1 < x < 1, 0 < t ≤ T}. Here D
(αs,βs)µs

0+ is a

left-sided bi-ordinal Hilfer fractional derivative defined in (1.3.4) when n = 1

and 0 < αs, βs < 1, 0 ≤ µs ≤ 1, s = 1, 2.
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4.1. Uniqueness and existence of solution for fractional Langevin type PDE

4.1.1 Statement of the problem and construction of a formal solu-

tion

Problem A. Find a solution u(x, t) of the equation (4.1.1) satisfying regularity

conditions

t1−γ2u, t1−γ2ux ∈ C(Ω),

D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u ∈ C(Ω), uxx ∈ C(Ω)

and initial condition

lim
t→0+

I
(1−µ2)(1−β2)
0+ u(x, t) = ψ(x), −1 ≤ x ≤ 1, (4.1.2)

and subject to the nonlocal condition

u(x, T ) =
m∑
i=1

piI
qi
0+D

δ2+γ1
0+ u(x, τi), −1 < x < 1, (4.1.3)

where ψ(x), f(x, t) are given functions and qi > 0, δj = βj + µj(αj − βj),

γj = βj + µj(1− βj), j = 1, 2, pi ∈ R, 0 < τ1 < τ2 < ... < τm ≤ T , and also we

assume that 0 < γ2 − γ1 < δ2.

We investigate the solvability (uniqueness and existence) of this problem

and present the solution in the form of Fourier-Legendre series as stated in the

following theorem.

Theorem 4.1.1. If
m∑
i=1

piτ
qi−1
i

Γ(qi)
> 0, ψ(x) ∈ C1[−1, 1], ψ′′(x) ∈ L2(−1, 1),

f(x, ·) ∈ C1
−1[0, T ] and f(·, t) ∈ C[−1, 1], fxx(·, t) ∈ L2(−1, 1), then the Prob-

lem A has a unique solution which can be represented as

u(x, t) =
∞∑
k=0

uk(t)Pk(x). (4.1.4)

Here λk = k(k+1), k = 0, 1, 2, ..., ψk and fk(t) are Fourier-Legendre coefficients

of functions ψ(x) and f(x, t), respectively,

uk(t) = ψkt
γ2−1Eδ2,γ2

(
−λktδ2

)
+ C0t

δ2+γ1−1Eδ2,δ2+γ1(−λktδ2+
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4.1. Uniqueness and existence of solution for fractional Langevin type PDE

+

t∫
0

(t− s)δ2+δ1−1Eδ2,δ2+δ1

[
−λk(t− s)δ2

]
fk(s)ds,

C0 is defined by the formula (4.1.14).

We note that the vector space C−1 is defined to be the set of all functions

f(x), x > 0, expressible as f(x) = xpf1(x) for some real number p > −1 and

function f1 ∈ C[0,∞) and the vector space C1
−1 is defined to consist of all

functions f(x), x > 0, such that f is one times differentiable and f ′ ∈ C−1 [72].

Proof. We intend to investigate this problem by applying the method of sepa-

ration variables. From the equation (4.1.1) in the homogeneous case and con-

sidering u(x, t), ux(x, t) are bounded at x = ±1 which are come from regularity

conditions, yield the following Legendre equation:

(1− x2)X ′′(x)− 2xX ′(x) + λX(x) = 0 (4.1.5)

and it has a bounded solution on [−1, 1] only if λk = k(k + 1), k = 0, 1, 2, ...

and it is given by

X(x) = Pk(x) =
1

2k · k!
dk(x2 − 1)k

dxk
,

where Pk(x) is a Legendre polynomials.

It is known that (W. Kaplan [63], p. 511) the Legendre polynomials form

a complete orthogonal system on [−1, 1] and any piece-wise continuous function

g can be expressed in the form of Fourier-Legendre series with respect to the

system {Pk(x)}:

g(x) =
∞∑
k=0

ckPk(x), ck =
(g, Pk)

∥Pk∥2
=

2k + 1

2

1∫
−1

g(x)Pk(x)dx.

Hence, we represent a sought function u(x, t) and the given function f(x, t) in

the following forms:

u(x, t) =
∞∑
k=0

uk(t)Pk(x), (4.1.6)
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f(x, t) =
∞∑
k=0

fk(t)Pk(x), (4.1.7)

where uk(t) are unknown and fk(t) are the Fourier-Legendre coefficient of f(x, t)

i.e,

fk(t) =
2k + 1

2

1∫
−1

f(x, t)Pk(x)dx.

By substituting (4.1.6) and (4.1.7) into the equation (4.1.1) and initial condition

(4.1.2) and nonlocal condition (4.1.3) one can obtain the following fractional

differential equation

D
(α1,β1)µ1

0+

(
D

(α2,β2)µ2

0+ + λk

)
uk(t) = fk(t), (4.1.8)

with initial condition

lim
t→0+

I
(1−µ2)(1−β2)
0+ uk(t) = ψk, (4.1.9)

and nonlocal condition

uk(T ) =
m∑
i=1

piI
qi
0+D

δ2+γ1
0+ uk(τi), (4.1.10)

where

ψk =
2k + 1

2

1∫
−1

ψ(x)Pk(x)dx.

Applying operator Iδ10+ to both sides of (4.1.8) and using the Lemma 1.3.15,

we obtain the following fractional differential equation

D
(α2,β2)µ2

0+ uk(t) + λkuk(t) = h(t), (4.1.11)

where

h(t) = Iδ10+fk(t) +
C0t

γ1−1

Γ(γ1)
.
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The solution of the problem (4.1.11), (4.1.9) can be represented as presented in

Lemma 1.3.16

uk(t) = ψkt
γ2−1Eδ2,γ2

(
−λktδ2

)
+

+
t∫
0

(t− τ)δ2−1Eδ2,δ2

[
−λk(t− τ)δ2

]
h(τ)dτ.

(4.1.12)

By substituting the expression of h(t) into the solution (4.1.12) and after

some evaluations, we can rewrite the solution of (4.1.8) satisfying (4.1.9) as

follows

uk(t) = ψkt
γ2−1Eδ2,γ2

(
−λktδ2

)
+ C0t

δ2+γ1−1Eδ2,δ2+γ1(−λktδ2+

+

t∫
0

(t− s)δ2+δ1−1Eδ2,δ2+δ1

[
−λk(t− s)δ2

]
fk(s)ds. (4.1.13)

In order to find C0 we use the nonlocal condition (4.1.10), and we obtain

ψkT
γ2−1Eδ2,γ2(−λkT δ2) + C0T

δ2+γ1−1Eδ2,δ2+γ1(−λkT δ2)+

+

T∫
0

(T − s)δ2+δ1−1Eδ2,δ2+δ1

[
−λk(T − s)δ2

]
fk(s)ds =

= ψk

m∑
i=1

piτ
γ2−δ2−γ1+qi−1
i Eδ2,γ2−γ1−δ2+qi(−λkτ

δ2
i )−

−C0λk

m∑
i=1

piτ
δ2+qi−1
i Eδ2,δ2+qi(−λkτ

δ2
i )+

+fk(0)
m∑
i=1

piτ
δ1−γ1+qi
i Eδ2,δ1−γ1+qi+1(−λkτ δ2i )+

+
m∑
i=1

pi

τi∫
0

(τi − s)δ1−γ1+qiEδ2,δ1−γ1+qi+1

[
−λk(τi − s)δ2

]
f ′k(s)ds.

From the last equality we find C0 as

C0 =
1

∆k
(Bk + Fk), (4.1.14)
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where

∆k = T δ2+γ1−1Eδ2,δ2+γ1

(
−λkT δ2

)
+ λk

m∑
i=1

piτ
δ2+qi−1
i Eδ2,δ2+qi

(
−λkτ δ2i

)
,

Bk = ψk

[
m∑
i=1

piτ
γ2−δ2−γ1+qi−1
i Eδ2,γ2−γ1−δ2+qi

(
−λkτ δ2i

)
−

−T γ2−1Eδ2,γ2

(
−λkT δ2

)]
,

Fk = fk(0)
m∑
i=1

piτ
δ1−γ1+qi
i Eδ2,δ1−γ1+qi+1

(
−λkτ δ2i

)
+

+
m∑
i=1

pi

τi∫
0

(τi − s)δ1−γ1+qiEδ2,δ1−γ1+qi+1

[
−λk(τi − s)δ2

]
f ′k(s)ds−

−
T∫

0

(T − s)δ2+δ1−1Eδ2,δ2+δ1

[
−λk (T − s)δ2

]
fk(s)ds.

We assume that ∆k ̸= 0 for any k, then (4.1.13) will be the solution of the

problem (4.1.8), (4.1.9), (4.1.10).

Considering Lemma 1.4.5 we can show that

lim
k→+∞

∆k = lim
λk→+∞

∆k = lim
|z1|→+∞

T δ2+γ1−1Eδ2,δ2+γ1(z1)−

− lim
|z2|→+∞

m∑
i=1

piτ
qi−1
i z2Eδ2,δ2+qi(z2) =

m∑
i=1

piτ
qi−1
i

Γ(qi)
.

Assuming
m∑
i=1

piτ
qi−1
i

Γ(qi)
̸= 0 then it confirms that ∆k ̸= 0 for any sufficiently

large k.

According to Lemma 1.4.2 we can find lower bound of ∆k for any k as

∆k ≥
T δ2+γ1−1

Γ(δ2 + γ1) + Γ(γ1)λkT δ2
+

m∑
i=1

piλkτ
δ2+qi−1
i

Γ(δ2 + qi) + Γ(qi)λkτ
δ2
i

≥

≥
m∑
i=1

piλkτ
δ2+qi−1
i

Γ(δ2 + qi) + Γ(qi)λkτ
δ2
i

=
m∑
i=1

piτ
qi−1
i

Γ(qi)
.
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If
m∑
i=1

piτ
qi−1
i

Γ(qi)
> 0 for any k. Moreover, we may write upper bound of

1

∆k
as

1

∆k
≤M1 =

1
m∑
i=1

piτ
qi−1
i

Γ(qi)

.

Now we find upper bound of Bk and Fk by using well-known estimation

of the Mittag-Leffler function given in Lemma 1.4.1:

|Bk| ≤ |ψk|

[
m∑
i=1

|pi|
τ γ2−δ2−γ1+qi−1
i M

1 + λkτ
δ2
i

+ T γ2−1 M

1 + λkT δ2

]
≤ |ψk|M2

λk
,

where M2 =
m∑
i=1

|pi|τ γ2−2δ2−γ1−1
i + T γ2−δ2−1,

|Fk| ≤ |fk(0)|
m∑
i=1

|pi|
τ δ1−γ1+qii M

1 + λkτ
δ2
i

+

+
m∑
i=1

|pi|
τi∫

0

|τi − s|δ1−γ1+qiM
1 + λk|τi − s|δ2

|f ′k(s)|ds+

+

T∫
0

|T − s|δ2+δ1−1 M

1 + λk|T − s|δ2
|fk(s)|ds.

If f ′k(s) ∈ C−1[0, T ], then we may consider for k → ∞ that

|Fk| ≤M3 < +∞, M3 = const > 0.

Considering upper bounds of Bk and Fk, we have that

|C0| ≤
Bk + Fk

∆k
≤ |ψk|M2 +M3

λk
m∑
i=1

piτ
qi−1
i

Γ(qi)

=
M4

λk
,

here we have assumed that ψ(x) ∈ C[−1, 1] and f(·, t) ∈ C[−1, 1] and f(x, ·) ∈

C1
−1[0, T ]. Now we move on to proof of the uniqueness of the solution.
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4.1.2 Uniqueness of the solution

Let there exist two solutions u1(x, t) and u2(x, t) of the main problem and

consider the function u(x, t) = u1(x, t) − u2(x, t) which is a solution of the

equation (4.1.1) in the homogeneous case with homogeneous initial conditions

lim
t→0+

I
(1−µ2)(1−β2)
0+ u(x, t) = 0, −1 ≤ x ≤ 1. (4.1.15)

Let us consider the following function

uk(t) =

1∫
−1

u(x, t)Pk(x)dx, k = 0, 1, 2, ..., . (4.1.16)

Based on (4.1.16), we consider the function below

vk(t) =

1−ε∫
ε−1

u(x, t)Pk(x)dx, k = 0, 1, 2, ..., . (4.1.17)

where ε is very small positive number.

Applying the operator D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ with respect to t to both sides

of equality (4.1.17) and using the homogeneous equation corresponding with

(4.1.1) yield that

D
(α1,β1)µ1

0+ D
(α2,β2)µ
0+ vk(t) =

1−ε∫
ε−1

D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t)Pk(x)dx =

=

1−ε∫
ε−1

Pk(x)D
(α1,β1)µ1

0+

∂

∂x

[
(1− x2)ux(x, t)

]
dx,

then integrating by parts twice the right side of the last equality and calculating

the limit as ε→ 0 give that

D
(α1,β1)µ1

0+

[
D

(α2,β2)µ2

0+ + λk

]
u(t) = 0.
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Obviously, it can be shown that this equation with homogeneous condition

(4.1.15) has only trivial solution uk(t) ≡ 0, t ∈ [0, T ] and hence, from (4.1.16)

we get
1∫

−1

u(x, t)Pk(x)dx = 0, k = 0, 1, 2, ..., .

Therefore, using the fact of completeness property of system {Pk(x)}, it is

deduced that u(x, t) ≡ 0 in Ω, which proves the uniqueness of the considered

problem.

4.1.3 Existence of the solution

In order to prove the existence of the solution in the form of (4.1.4), we need

to show the uniform convergence of the series u(x, t),

D
(α1,β1)µ1

0+
∂
∂x

[
(1− x2)ux(x, t)

]
and D

(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t).

For k = 1, 2, 3, ... the Legendre polynomials satisfy the following identities

and relations [63]:

1) P ′
k+1(x)− P ′

k−1(x) = (2k + 1)Pk(x), 2) ∥Pk(·)∥2 = 2
2k+1 ,

3) Pk(1) = 1, Pk(−1) = (−1)k, 4) |Pk(x)| ≤ 1, |x| ≤ 1.

Let (f, g) be scalar product of the functions f and g in L2(−1, 1). Using

above properties of the Legendre polynomials, we can write as

ψk =
2k + 1

2

1∫
−1

ψ(x)Pk(x)dx =

=
2k + 1

2

1∫
−1

ψ(x)
1

2k + 1
[P ′
k+1(x)− P ′

k−1(x)] dx

and integrating by parts

ψk = −1

2

1∫
−1

ψ(x) [Pk+1(x)− Pk−1(x)] dx = −1

2
[(ψ′, Pk+1)− (ψ′, Pk−1)] .
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Considering Schwartz inequality |(f, g)| ≤ ∥f∥∥g∥, we can write the esti-

mation of ψk, where ∥ · ∥ = ∥ · ∥L2(−1,1) :

|ψk| ≤
1

2
|(ψ′, Pk+1)|+

1

2
|(ψ′, Pk−1)| ≤

≤ 1

2
[∥ψ′∥ · ∥Pk+1∥+ ∥ψ′∥ · ∥Pk+1∥] ≤

≤ 1

2
∥ψ′∥

( √
2

(2k + 3)
1
2

+

√
2

(2k − 1)
1
2

)
≤ ∥ψ′∥

√
2

(2k − 1)
1
2

.

Repeating this process again we can obtain

|ψk| ≤
4
√
2

(2k − 3)
3
2

∥ψ′′(·)∥. (4.1.18)

As a similar way, we write the estimation of fk(t):

|fk(t)| ≤
4
√
2

(2k − 3)
3
2

∥f ′′xx(·, t)∥. (4.1.19)

Considering above estimation for the Mittag-Leffler function we write the bound

of u(x, t) by virtue of the properties of the Legendre polynomials

|u(x, t)| ≤
∞∑
k=0

[
|ψk|

tγ2−1M

1 + |λk||tδ2|
+ |C0|

tδ2+γ1−1M

1 + |λk||tδ2|
+

+

∫ t

0

|t− s|δ2+δ−1 M

1 + |λk||t− s|δ2
|fk(s)ds|

]
.

If ψ(x) ∈ C[−1, 1] and f(·, t) ∈ C−1[−1, 1], we can show that the series of u(x, t)

can be bounded by convergent series in Ω domain and therefore by Weierstrass

M-test the series representation of u(x, t) converges uniformly in Ω.

After that by using properties of the Legendre polynomials we show uni-

form convergence of the series of D
(α1,β1)µ1

0+
∂
∂x [(1−x

2)ux] which is represented as

follows:

D
(α1,β1)µ1

0+

∂

∂x
[(1− x2)ux] = −

∞∑
k=0

λkD
(α1,β1)µ1

0+ uk(t)Pk(x) =
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= −
∞∑
k=0

λk

[
ψkt

γ2−δ1−1Eδ2,γ2−δ1(−λktδ2) + C0t
δ2+γ1−δ1−1Eδ2,δ2+γ1−δ1(−λktδ2)+

+

t∫
0

(t− s)δ2−1Eδ2,δ2[−λk(t− s)δ2]fk(s)ds

]
Pk(x).

By means of properties of the Legendre polynomials and the upper bounds of

the Mittag-Leffler function presented by the Lemma 1.4.1 and above estimations

for given functions, we obtain the following estimate∣∣∣∣D(α1,β1)µ1

0+

∂

∂x

[
(1− x2)ux

]∣∣∣∣ ≤ ∞∑
k=0

|D(α1,β1)µ1

0+ uk(t)λkPk(x)| ≤

≤
∞∑
k=0

λk

[
|ψk|

tγ2−δ1−1M

1 + λk|tδ2|
+ |C0|

tδ2+γ1−δ1−1M

1 + λk|tδ2|

]
+

+
∞∑
k=0

λk

t∫
0

|t− z|δ2−1 M

1 + λk||t− z|δ2
|fk(z)|dz ≤

≤
∞∑
k=0

[
MT γ2−δ1−δ2−14

√
2

(2k − 3)
3
2

∥ψ′′(x)∥+ MM4T
γ1−δ1−1

λk

]
+

+
∞∑
k=0

∫ t

0

|t− z|δ2−1 Mλk
1 + λk||t− z|δ2

4
√
2

(2k − 3)
3
2

∥f ′′xx(·, z)∥dz],

where λk = k(k + 1).

From the last inequalities one can show that the series of representation

of D
(α1,β1)µ1

0+
∂
∂x [(1− x2)ux] is bounded by a convergent series which implies that

it is convergent uniformly according to the Weierstrass M-test in Ω.

Finally,D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t) which can be represented by the equation

D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t) = D
(α1,β1)µ1

0+

∂

∂x

[
(1− x2)ux(x, t)

]
+ f(x, t)

and its uniform convergence can be shown as a similar way which we have done

before to the D
(α1,β1)µ1

0+
∂
∂x [(1− x2)ux].

All in all, we have proved the Theorem 4.1.1.
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4.2 Inverse source problem of determining a time-

dependent source in a fractional Langevin type PDE

On the one hand, studying inverse source problems have been an important

target as research for mathematicians due to the applications in science and

engineering [108], [15].

On the other hand, showing a solution’s global (in time) existence and

uniqueness is a complicated task. Another interesting thing is that the goal

in solving inverse source problems is their solvability and description of a con-

structive algorithm for finding a solution. We suggest the references [45], [101],

[105] for readers to get a piece full of detailed information about some methods

of solving inverse source problems devoted to determining t-dependent factor

in the source such as analytical and numerical techniques.

In this section we are also concerning with studying the time dependent

inverse source problem for the equation (4.1.1) and we will take another more

favorable condition in order to facilitate calculations instead of non-local con-

dition (4.1.3).

Letting the source term have the form f(x, t) = a(t)h(x), then the inverse

problem consists of determining a source term a(t) and u(x, t) (the temperature

distribution in the heat process), from the initial data ψ(x) (initial temperature

in heat process) and boundary conditions which come from regularity condi-

tions.

We refer the references that some researches about determining time de-

pendent coefficient in the source term of PDEs by using different methods [106]
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4.2.1 Mathematical setting

Let γ1 < γ2 − δ2, T > 0 arbitrary fixed time and Ω = {(x, t) : −1 < x < 1, 0 <

t ≤ T}.

The inverse source problem (ISP) here is to find a pair {u(x, t), a(t)}

functions for given h(x), ψ(x), φ(x) such that

D
(α1,β1)µ1

0+

(
D

(α2,β2)µ2

0+ u(x, t)− ∂
∂x

[
(1− x2)ux(x, t)

])
= h(x)a(t),

lim
t→0+

I
(1−µ2)(1−β2)
0+ u(x, t) = ψ(x), −1 ≤ x ≤ 1,

lim
t→0+

I1−γ1−δ20+ u(x, t) = φ(x), −1 ≤ x ≤ 1,

(4.2.1)

We provide the over-determination condition as a way to make the inverse

problem uniquely solved:

1∫
−1

u(x, t)dx = E(t), (4.2.2)

where E(t) ∈ AC2([0, T ],R).

We also consider the following regularity conditions for the solution of

inverse source problem (4.2.1), (4.2.2)

t1−δ2−γ1u ∈ C(Ω), t1−δ2−γ1ux ∈ C(Ω), t1−δ2−γ1a(t) ∈ C[0, T ],

D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u ∈ C(Ω), uxx ∈ C(Ω).

Theorem 4.2.1. Let γ1 < γ2−δ2, 0 <
(

1∫
−1

h(x)dx

)−1

< M such that h(4)(x) ∈

L2(−1, 1), ψ′′(x) ∈ L2(−1, 1), φ′′(x) ∈ L2(−1, 1), E ′′(t) ∈ L1(0, T ), then the

unique solution of the inverse source problem (4.2.1)-(4.2.2) exists.

Proof. Existence of a solution to the ISP

By applying the standard procedure of the Fourier method, we obtain the fol-

lowing representation for the solution of (4.2.1), (4.2.2) for arbitrary a(t) ∈
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C[0, T ]

u(x, t) =
∞∑
k=0

uk(t)Pk(x), (4.2.3)

where

uk(t) = ψkt
γ2−1Eδ2,γ2

(
−λktδ2

)
+ φkt

δ2+γ1−1Eδ2,δ2+γ1(−λktδ2+

+ hk

t∫
0

(t− s)δ2+δ1−1Eδ2,δ2+δ1

[
−λk(t− s)δ2

]
a(s)ds, (4.2.4)

with ψk =
2k + 1

2

1∫
−1

ψ(x)Pk(x)dx, φk =
2k + 1

2

1∫
−1

φ(x)Pk(x)dx,

hk =
2k + 1

2

1∫
−1

h(x)Pk(x)dx, k = 0, 1, 2, ...

Taking fractional derivative D
(α2,β2)µ2

0+ and D
(α1,β1)µ1

0+ under the integral

sign of the over-determination condition (4.2.2) and in view of the equation in

(4.2.1), we obtain

a(t) =

 1∫
−1

h(x)dx

−1

·D(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ E(t). (4.2.5)

Substituting (4.2.5) into (4.2.4) and assuming that D
(α2,β2)µ2

0+ E(t) ∈

L1(0, T ), E(t) ∈ C[0, T ] and E ′(t) ∈ L1(0, T ) step by step, we get

uk(t) = ψkt
γ2−1Eδ2,γ2

(
−λktδ2

)
+ φkt

δ2+γ1−1Eδ2,δ2+γ1(−λktδ2+

+ hkh
∗

(
E(t)− λk

t∫
0

(t− s)δ2−1Eδ2,δ2

[
−λk(t− s)δ2

]
E(s)ds

)
, (4.2.6)

where h∗ =

(
1∫

−1

h(x)dx

)−1

.
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4.2. Time-dependent inverse source problem for Langevin-type PDE

Now let us establish necessary condition for E(t) in order to show the

existence of (4.2.5) and here we might take stronger condition for E(t).

Considering Definition 1.3.11 we make sure that I1−γ10+

(
D

(α2,β2)µ2

0+ E(t)
)
∈

AC[0, T ] or D
(α2,β2)µ2

0+ E(t) ∈ AC[0, T ]. From the last condition we derive that

E ′(t) ∈ C[0, T ] and E ′′(t) ∈ L1(0, T ). These conditions ensure that a(t) ∈

C[0, T ].

From the properties of Legendre polynomials discussed in the section 4.1,

we recall that

|hk| ≤
4
√
2

(2k − 3)3/2
∥h′′(·)∥, |hk| ≤

6
√
2

(2k − 7)7/2
∥h(4)(·)∥.

where ∥ · ∥ is a norm of L2(−1, 1).

Now, by taking estimate for the series t1−δ2−γ1u(x, t), for all t ∈ [0, T ] we

get∣∣∣t1−δ2−γ1u(x, t)∣∣∣ ≤ ∞∑
k=0

|uk(t)|2 |Pk(x)| ≤

∞∑
k=0

|ψk|
∣∣tγ2−δ2−γ1Eδ2,γ2(−λktδ2)

∣∣2 + ∞∑
k=0

|φk|
∣∣Eδ2,δ2−γ2+γ1+1(−λktδ2)

∣∣+
∞∑
k=0

|hk||h∗|
(
|E(t)|2 + |E(0)|2 λk

∣∣tδ2Eδ2,δ2+1(−λktδ2)
∣∣2)+

+
∞∑
k=0

|hk||h∗|λk

t∫
0

∣∣(t− s)δ2Eδ2,δ2+1[−λk(t− s)δ2]
∣∣ |E ′(s)| ds ≤

≤
∞∑
k=0

|ψk|
(
Mtγ2−1

1 + λktδ2

)
+

∞∑
k=0

|φk|
(
Mtδ2+γ1−1

1 + λktδ2

)
+

+
∞∑
k=0

|hk||h∗|
(
|E(t)|+ |E(0)|λk

(
Mtδ2

1 + λktδ2
)

))
+

+
∞∑
k=0

|hk||h∗|
t∫

0

(
Mλk(t− s)δ2

1 + λk(t− s)δ2
)

)
|E ′(s)| ds ≤
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≤ ∥ψ′′(·)∥
∞∑
k=0

4
√
2

(2k − 3)3/2

(
Mtγ2−1

1 + λktδ2

)
+ ∥φ′′(·)∥

∞∑
k=0

4
√
2

(2k − 3)3/2

(
Mtδ2+γ1−1

1 + λktδ2

)
+

+∥h′′(·)∥
∞∑
k=0

|h∗|4
√
2

(2k − 3)3/2

(
|E(t)|+ |E(0)|

(
Mλkt

δ2

1 + λktδ2
)

))
+

+∥h′′(·)∥
∞∑
k=0

|h∗|4
√
2

(2k − 3)3/2

t∫
0

(
Mλk(t− s)δ2

1 + λk(t− s)δ2
)

)
|E ′(s)| ds.

We presume E ′(t) ∈ C[0, T ] and considering Weierstrass M- test one can see

that the series representation of t1−δ2−γ1u(x, t) converges uniformly.

Now, for the second term of the equation (4.1.1) we have

D
(α1,β1)µ1

0+

∂

∂x

[
(1− x2)ux

]
= −

∞∑
k=0

λkD
(α1,β1)µ1

0+ uk(t)Pk(x) =

= −
∞∑
k=0

λk

[
ψkt

γ2−δ1−1Eδ2,γ2−δ1(−λktδ2) + φkt
δ2+γ1−δ1−1Eδ2,δ2+γ1−δ1(−λktδ2)+

+ hkh
∗D

(α1,β1)µ1

0+ E(t)− λkhkh
∗E(0)tδ2−δ1Eδ2,δ2−δ1+1(−λktδ2)

− λkhkh
∗

t∫
0

(t− s)δ2−δ1Eδ2,δ2−δ1+1[−λk(t− s)δ2]E ′(s)ds

]
Pk(x).

By taking estimate with help of properties of Legendre polynomials and

Mittag-Leffler function, we get∣∣∣∣D(α1,β1)µ1

0+

∂

∂x

[
(1− x2)ux(·, t)

]∣∣∣∣ ≤
∞∑
k=0

[
|λkψk|

(
Mtγ2−δ1−1

1 + λktδ2

)
+ |λkφk|

(
Mtδ2+γ1−δ1−1

1 + λktδ2

)
+

+|λkhk||h∗D(α1,β1)µ1

0+ E(t)|+ |λkhkh∗||λkE(0)|
(
Mtδ2−δ1

1 + λktδ2

)
+
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

+ |λkhkh∗||λkE ′(0)|
(
Mtδ2+1−δ1

1 + λktδ2

)
+

+ |λ2khkh∗|
t∫

0

(
M(t− s)δ2+1−δ1

1 + λk(t− s)δ2

)
|E ′′(s)|ds

]
≤

≤
∞∑
k=0

∥ψ′′(·)∥4
√
2

(2k − 3)3/2

(
λkMtγ2−δ1−1

1 + λktδ2

)
+

∞∑
k=0

∥φ′′(·)∥4
√
2

(2k − 3)3/2

(
λkMtγ2−δ1−1

1 + λktδ2

)
+

∞∑
k=0

6
√
2λk∥h(4)(·)∥
(2k − 7)7/2

(
|h∗D(α1,β1)µ1

0+ E(t)|+ |E(0)|
(
Mλkt

δ2−δ1

1 + λktδ2

))
+

∞∑
k=0

6
√
2λk∥h(4)(·)∥
(2k − 7)7/2

(
|E ′(0)|

(
Mλkt

δ2+1−δ1

1 + λktδ2

)
+

+ |h∗|
t∫

0

(
Mλk(t− s)δ2+1−δ1

1 + λk(t− s)δ2

)
|E ′′(s)|ds

)

If ψ′′(x) ∈ L2(−1, 1), φ′′(x) ∈ L2(−1, 1), h(4)(x) ∈ L2(−1, 1) and

E ′′(t) ∈ L1(0, T ), then the series representation of ∥D(α1,β1)µ1

0+
∂
∂x

[
(1− x2)ux

]
converges uniformly in Ω. Finally, in a similar way, one can show that the

series D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u is uniformly convergent in Ω.

This proves existence of solution of ISP.

The uniqueness of the ISP can be shown by using the fact of completeness

of the system of Legendre polynomials Pk(x) in L
2(−1, 1).

4.3 Direct and inverse source problem for 2D Landau

Hamiltonian operator

4.3.1 Formulation of a problem

In this section, we consider a non-relativistic particle with mass m and electric

charge e moving in a given electromagnetic field and concentrate on the 2D
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

version. Usually vector potential A is used for describing the electromagnetic

field in the plane. One of the classical models in quantum physics is the Landau

Hamiltonian, which describes the behavior of a quantum particle in two dimen-

sions under the influence of a constant magnetic field and it was introduced in

late 1920-s (see [69]). On the Euclidean xy-plane interacting with a perpen-

dicular homogeneous electromagnetic field, the following Hamiltonian operator

determines the dynamics of a particle with mass m and charge e:

H0 :=
1

2m

(
ih∇− e

c
A
)2
, (4.3.1)

where i denotes the imaginary unit, h is Planck’s constant, c is the speed

of light. We denote by 2B > 0 the strength of the magnetic field and the

symmetric gauge can be selected by

A :=
r

2
× B = (−By,Bx) ,

where r = (x,y) ∈ R2.

In Ω = {(t, x) : t ∈ (0, T ), x ∈ R2}, we consider the following Cauchy-

type problem for the fractional pseudo-parabolic equation involving the bi-

ordinal Hilfer’s derivative and a Landau Hamiltonian operator with initial-type

conditions D
(α,β)µ
t u(t, x) + (aD

(α,β)µ
t + q)Hu(t, x) = f(t, x), (t, x) ∈ Ω,

lim
t→0+

I
(1−µ)(1−β)
0+ u(t, x) = u0(x), x ∈ R2.

(4.3.2)

where a, q ∈ R+, 0 < α, β ≤ 1, 0 ≤ µ ≤ 1 and D
(α,β)µ
t is the bi-ordinal Hilfer’s

fractional derivative of orders α and β of type µ as stated in (1.3.3), H is a

Landau Hamiltonian operator acting on the L2(R2) defined by

H =
1

2

((
i
∂

∂x
−By

)2

+

(
i
∂

∂y
−Bx

)2
)
, (4.3.3)

which can be obtained from (4.3.1) by setting m = h = c = e = 1.
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

The spectrum of H contains the infinite number of eigenvalues with the

infinite multiplicity of the form (see [33], [70])

λn = (2n+ 1)B, n = 0, 1, 2, ...,

and those eigenvalues are called the Euclidean Landau levels.

Let us denote the eigenspace of H corresponding to the eigenvalue λn by

An(R2), i.e.

An(R2) = {ϕ ∈ L2(R2), Hϕ = λnϕ}.

The eigenfunctions corresponding λn can be designated by

ekξ := ekj,n for ξ = (j, n), j, n = 0, 1, 2, ...; k = 1, 2. (4.3.4)

In the references [1], [44], the following functions are presented as the

orthonormal basis for An(R2):

e1k,n(x, y) = ck,n
√

n!
(n−k)!B

k+1
2 exp

(
−B(x2+y2)

2

)
×

(x+ iy)kL
(k)
n (B(x2 + y2)), 0 ≤ k,

e2j,n(x, t) = cjn

√
j!

(n+n)!B
n−1
2 exp

(
−B(x2+y2)

2

)
×

(x− iy)nL
(n)
j (B(x2 + y2)), 0 ≤ j,

(4.3.5)

where ckn, cjn are the normalizing coefficients, L
(α)
n is the Laguerre polynomial

defined as

L(α)
n (x) =

n∑
k=0

(−1)kCn−k
n+α

xk

k!
, α > −1.

It should be noted that while the physical aspects of the Landau Hamilto-

nian operator are being studied, the importance of studying the mathematical

equations which are involved with this operator is increasing. As an example,

let us consider the reference [97] which devoted studying the following Cauchy
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

problem:
∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = 0, (t, x) ∈ [0, T ]× R2,

u(0, x) = u0(x), x ∈ R2,

∂tu(0, t) = u1(x), x ∈ R2,

(4.3.6)

and the theorem about the existence, uniqueness and consistency of the solu-

tion for the Landau Hamiltonian on R2 is proved. The description of the notion

of very week solution for the wave equation for the Landau Hamiltonian is also

given. Moreover, it is established the well-posedness results for many types of

the wave equation for the Landau Hamiltonian similar to (4.3.6) with irregu-

lar electromagnetic field and similarly irregular velocity. Detailed information

about the investigations of the Fourier analysis for the Landau Hamiltonian can

be also found in these references [98], [99], [100].

4.3.2 Fourier analysis for the Landau Hamiltonian

In this subsection we recall the auxiliary results of the global Fourier analysis

for the Landau Hamiltonian that has been developed in [99], [100].

Let C∞
H (R2) := Dom(H∞) signify the space of test functions for H which

has the form below

Dom(H∞) :=
∞⋂
k=1

Dom(Hk)

where Dom(Hk) is the domain of the operator Hk identified by

Dom(Hk) :=
{
f ∈ L2(R2) : Hjf ∈ Dom(H), j = 0, 1, 2, ..., k − 1

}
.

The Frechet topology of C∞
H (R2) is given by the family of norms

∥φ∥Ck
H
:= max

j≤k
∥Hjφ∥L2(R2), k ∈ N0, φ ∈ C∞

H (R2). (4.3.7)

We also recall the definition of the space of linear continuous functionals on

C∞
H (R2) by

D′
H(R2) := L(C∞

H (R2),C)
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

which is called the space ofH-distributions and here the continuity is considered

in terms of topology (4.3.7). It is concluded that ω(φ) = ⟨ω, φ⟩ is written for

ω ∈ D′
H(R2) and φ ∈ C∞

H (R2).

The functional which is an H-distributions enucleated as

φ 7→
∫
R2

ψ(x)φ(x)dx φ ∈ C∞
H (R2)

for any ψ ∈ C∞
H (R2), which gives an embedding ψ ∈ C∞

H (R2) ↪→ D′
H(R2). It

can be clearly seen that using the notation (4.3.4) opens a way to group the

pairs of eigenfunctions of the Landau Hamiltonian (4.3.5). After this notion, it

is expedient to recall the following definitions presented in [100] step by step.

Let S(N2) denote the space of rapidly decaying functions φ : N2 → C2×2

of the form

φ :=

(
φ11 0

0 φ22

)
.

That is, φ ∈ S(N2) if for any M <∞ there exists a constant Cφ,M such that

|φ(ξ)| ≤ Cφ,M⟨ξ⟩−M

holds for all ξ ∈ N2, where we denote

⟨ξ⟩ := |
√
λξ2| =

∣∣∣√(2ξ2 + 1)B
∣∣∣ .

The topology on S(N2) is given by the semi-norms pk, where k ∈ N0 and

pk(φ) := sup
ξ∈N2

⟨ξ⟩k|φ(ξ)|.

We now define the H-Fourier transform on C∞
H (R2) as the mapping

(FHf)(ξ) = (f 7→ f̂) : C∞
H (R2) → S(N2)

by the formula

f̂(ξ) := (FHf)(ξ) =

∫
R2

f(x)eξ(x)dx (4.3.8)
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where

eξ(x) =

(
e1ξ(x) 0

0 e2ξ(x)

)
.

The Fourier transform FH is a bijective homeomorphism from C∞
H (R2) to

S(N2). Its inverse

F−1
H : S(N2) → C∞

H (R2)

is given by

(F−1
H h)(x) =

∑
ξ∈N2

Tr(h(ξ)eξ(x)), h ∈ S(N2), (4.3.9)

so that the Fourier inversion formula becomes

f(x) =
∑
ξ∈N2

Tr
(
f̂(ξ)eξ(x)

)
for all f ∈ C∞

H (R2). (4.3.10)

The Plancherel’s identity taking the form

∥f∥L2(R2) =

∑
ξ∈N2

∥f̂(ξ)∥2HS

1/2

=: ∥f̂∥ℓ2(N2), (4.3.11)

which we take as the definition of the norm on the Hilbert space ℓ2(N2), and

where ∥f̂(ξ)∥2HS = Tr(f̂(ξ)f̂(ξ)) is the Hilbert-Schmidt norm of the matrix

f̂(ξ).

Since the test functions and distributions on R characterised with the

help of their Fourier coefficients, we have

f ∈ C∞
H (R2) ⇔ ∀N∃CN such that ∥f̂(ξ)∥2HS ≤ CN⟨ξ⟩−N for all ξ ∈ N2

Also for distributions, we have

u ∈ D′
H(R2) ⇔ ∃M∃C such that ∥û(ξ)∥HS ≤ C⟨ξ⟩M for all ξ ∈ N2.

The operator H is formally self-adjoint, therefore its symbol σH(ξ) is

independent of x and can be diagonalized by a choice of the basis in the R2.
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Moreover, the operator H is positive. Therefore, without loss of generality, we

can always write

σH(ξ) =

(
ν21(ξ) 0

0 ν22(ξ)

)
, (4.3.12)

for some νj(ξ) ≥ 0. Indeed, we have ν2j (ξ) = B(1 + 2ξ2) for j = 1, 2.

Consequently we define Sobolev space HH(G) associated to H. Thus, for

any s ∈ R, we set

Hs
H(G) :=

{
f ∈ D′

H(R2) : Hs/2f ∈ L2(R2)
}
, (4.3.13)

with the norm ∥f∥Hs
H
:= ∥Hs/2f∥L2. Using the Plancherel’s identity (4.3.11),

we can write

∥f∥Hs
H
:= ∥Hs/2f∥L2 =

(
∥σH(ξ)s/2f̂(ξ)∥2HS

)1/2
=∑

ξ∈N2

(B + 2Bξ2)
s

2∑
j=1

|f̂(ξ)jj|2
1/2

=

∑
ξ∈N2

(B + 2Bξ2)
s

2∑
j=1

∣∣∣∣∫
R2

f(x)ejξ(x)dx

∣∣∣∣2
1/2

. (4.3.14)

4.3.3 Main results of direct problem

We define the space of the weighted continuous functions C1−γ([0, T ];L
2(R2))

furnished with the maximum norm

∥u∥C1−γ([0,T ];L2(R2)) := max
t∈[0,T ]

t1−γ∥u(t, ·)∥L2(R2). (4.3.15)

Here is the main result of the forward problem (4.3.2).

Theorem 4.3.1. Assume that f ∈ C1−γ
(
[0, T ];L2(R2)

)
∩

C1−γ
(
[0, T ];H−1

H (R2) ∩H1
H(R2)

)
and u0 ∈ L2(R2) ∩ H1

H(R2). Then

the Cauchy type problem for the time-fractional pseudo-parabolic equa-

tion (4.3.2) has a unique solution u ∈ C1−γ([0, T ];L
2(R2)) such that

Hu, D(α,β)µ
t u ∈ C1−γ([0, T ];L

2(R2)) in the following form:

118



4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

u(t, x) =
∑
ξ∈N2

Tr (û(t, ξ) eξ(x)) =

∑
ξ∈N2

(
û(t, ξ)11 e

1
ξ(x) + û(t, ξ)22 e

2
ξ(x)

) (4.3.16)

where

û(t, ξ)mm = û0(ξ)mmt
γ−1Eδ,γ

(
− qB(1 + 2ξ2)

1 + aB(1 + 2ξ2)
tδ
)
+

1

1 + qB(1 + 2ξ2)
×

∫ t

0

(t−τ)δ−1Eδ,δ

(
− qB(1 + 2ξ2)

1 + aB(1 + 2ξ2)
(t− τ)δ

)
f̂(τ, ξ)mmdτ, m = 1, 2

Proof of Theorem 4.3.1. The operator H has the symbol (4.3.12), which we can

write in the matrix components as

σH(ξ)mk = B(1 + 2ξ2)δmk, 1 ≤ m, k ≤ 2,

with δmk standing for the Kronecker’s delta. Taking the H-Fourier transform

of (4.3.2) we obtain the collection of Cauchy type problems for matrix-valued

Fourier coefficients:

D
(α,β)µ
t û(t, ξ) + (aD

(α,β)µ
t + q)σH(ξ)û(t, ξ) = f̂(t, ξ), ξ ∈ N2 (4.3.17)

Writing this equation in the matrix form, we see that this is equivalent to the

system

D
(α,β)µ
t û(ξ, t) +

(
B(1 + 2ξ2) 0

0 B(1 + 2ξ2)

)
× (aD

(α,β)µ
t + q)û(ξ, t) = f̂(ξ, t), (4.3.18)
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where ξ ∈ N2 and we put explicitly the diagonal symbol σH(ξ). Rewriting

(4.3.17) in terms of matrix coefficients û(t, ξ) = (û(t, ξ)mk)1≤m,k≤2, we get the

equations

D
(α,β)µ
t û(t, ξ)mk + (aD

(α,β)µ
t + q)σH(ξ)mkû(t, ξ)mk = f̂(t, ξ)mk, (4.3.19)

for ξ ∈ N2, 1 ≤ m, k ≤ 2.

The main point of our further analysis is that we can make an individual

treatment of the equations in (4.3.19). Thus, let us fix ξ ∈ N2 and m, k with

1 ≤ m, k ≤ 2. We then study the Cauchy-type problems D
(α,β)µ
t û(t, ξ)mk + (aD

(α,β)µ
t + q)σH(ξ)mkû(t, ξ)mk = f̂(t, ξ)mk,

lim
t→0+

I
(1−µ)(1−β)
0+ û(t, ξ)mk = û0(ξ)mk,

(4.3.20)

where ξ,m are parameters.

Using the result of Lemma 1.3.16, we can write the explicit solution of

(4.3.20) in the following form:

û(t, ξ)mk = û0(ξ)mkt
γ−1Eδ,γ

(
− qB(1 + 2ξ2)

1 + aB(1 + 2ξ2)
tδ
)
+

1

1 + aB(1 + 2ξ2)
×

∫ t

0

(t− τ)δ−1Eδ,δ

(
− qB(1 + 2ξ2)

1 + aB(1 + 2ξ2)
(t− τ)δ

)
f̂(τ, ξ)mkdτ

We apply an inverse Fourier transform to the last result and we have

u(t, x) =
∑
ξ∈N2

Tr (û(t, ξ) eξ(x)) =

∑
ξ∈N2

(
û(t, ξ)11 e

1
ξ(x) + û(t, ξ)22 e

2
ξ(x)

)
.

(4.3.21)

From now on, for shortly writing we say λξ = Bq(1+2ξ2) and θξ = (1+aB(1+

2ξ2))
−1.
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

Now taking L2-norm, for all t ∈ [0, T ], we have

t2(1−γ) ∥u(t, ·)∥2L2(R2) ≤

t2(1−γ)
∑
ξ∈N2

|
2∑

m=1

û0(ξ)mm|2
∣∣tγ−1Eδ,γ

(
−λξθξtδ

)∣∣2+
+ t2(1−γ)

∑
ξ∈N2

2∑
m=1

(
θξ

∫ t

0

∣∣(t− τ)δ−1Eδ,δ

[
−λξθξ(t− τ)δ

]
τ γ−1

∣∣×
×
∣∣∣τ 1−γ f̂(τ, ξ)mm∣∣∣ dτ)2

≤

≤M
∑
ξ∈N2

(
1

1 + λξθξtδ

)2 2∑
m=1

|û0(ξ)mm|2+

+M
∑
ξ∈N2

2∑
m=1

(
max
t∈[0,T ]

∣∣∣t1−γ f̂(t, ξ)mm∣∣∣)2

×

×
(
t1−γθξ

∫ t

0

∣∣(t− τ)δ−1Eδ,δ

[
−λξθξ(t− τ)δ

]
τ γ−1

∣∣ dτ)2

≤

M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2+

+M
∑
ξ∈N2

2∑
m=1

(
max
t∈[0,T ]

∣∣∣t1−γ f̂(t, ξ)mm∣∣∣)2
(
θξt

1−γΓ(γ)tδ+γ−1Eδ,δ+γ(−λξθξtδ)

)2

≤

M
∑
ξ∈N2

2∑
m=1

|û0(ξ)|2 +M max
t∈[0,T ]

t2(1−γ)
∑
ξ∈N2

|θξ|2
2∑

m=1

∣∣∣f̂(t, ξ)mm∣∣∣2( tδ

1 + λξθξtδ

)2

≤

≤M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2 +M max
t∈[0,T ]

t2(1−γ)
∑
ξ∈N2

(B + 2Bξ2)
−2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2 ≤
≤M∥u0∥2L2(R2) +M max

t∈[0,T ]
t2(1−γ) ∥f(t, ·)∥2H−1

H
.

Due to the definition of weighted space we have

∥u∥2C1−γ([0,T ];L2(R2)) ≤M
(
∥u0∥2L2(R2) + ∥f∥2C1−γ([0,T ];H

−1
H )

)
.
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

We have used the following inequality and Plancherel’s identity for H.

Now, for Landau Hamiltonian, we have

Hu(t, x) = 1

q

∑
ξ∈N2

2∑
m=1

û0(ξ)mmt
γ−1Eδ,γ

(
−λξθξtδ

)
λξeξ(x)+

+
1

q

∑
ξ∈N2

2∑
m=1

λξθξeξ(x)

∫ t

0

(t− τ)δ−1Eδ,δ

(
−λξθξ(t− τ)δ

)
f̂(τ, ξ)mmdτ.

By taking L2-norm, we obtain

t2(1−γ) ∥Hu(t, ·)∥2L2(R2) ≤

t2(1−γ)

q

∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2
∣∣tγ−1Eδ,γ

(
−λξθξtδ

)∣∣2 |λξ|2+
+
t2(1−γ)

q

∑
ξ∈N2

2∑
m=1

|λξθξ|2
(∫ t

0

∣∣(t− τ)δ−1Eδ,δ

(
−λξθξ(t− τ)δ

)
τ γ−1

∣∣×
×
∣∣∣τ 1−γ f̂(τ, ξ)mm∣∣∣ dτ)2

≤
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2 λ2ξ
(

1

1 + λξθξtδ

)2

+M
∑
ξ∈N2

2∑
m=1

(
max
t∈[0,T ]

∣∣∣t1−γ f̂(t, ξ)mm∣∣∣)2

×

×

(
t1−γ

∫ t

0

∣∣(t− τ)δ−1Eδ,δ

[
−λξθξ(t− τ)δ

]
τ γ−1

∣∣ dτ)2

≤

≤M
∑
ξ∈N2

(B(1 + 2ξ2))
2

2∑
m=1

|û0(ξ)|2+

M
∑
ξ∈N2

2∑
m=1

(
max
t∈[0,T ]

∣∣∣t1−γ f̂(t, ξ)mm∣∣∣)2
(
t1−γΓ(γ)tδ+γ−1Eδ,δ+γ(−λξθξtδ)

)2

≤

M∥H1/2u0∥2L2(R2) +M max
t∈[0,T ]

t2(1−γ)
∑
ξ∈N2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2( tδ

1 + λξθξtδ

)2

≤

M∥H1/2u0∥2L2(R2) +M max
t∈[0,T ]

t2(1−γ)
∑
ξ∈N2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2 ≤
≤ ∥u0∥2H1

H(R2) +M max
t∈[0,T ]

t2(1−γ)∥f(t, ·)∥L2(R2).

According to the formula (4.3.14), if u0(x) ∈ H1
H(R2) and then we can say∑

ξ∈N2

(B(1 + 2ξ2))
2

2∑
m=1

|û0(ξ)mm|2 < +∞.

Thus, we have

∥Hu(t, x)∥2C1−γ([0,T ];L2(R2)) ≤M
(
∥u0∥2H1

H(R2) + ∥f∥2C1−γ([0,T ];L2(R2))

)
.

Now we show the existence of the D
(α,β)µ
t u(x, t) and D

(α,β)µ
t Hu(x, t) which

are represented by

D
(α,β)µ
t u(x, t) =

∑
ξ∈N2

2∑
m=1

û0(ξ)mm (−λξθξ) tγ−1Eδ,γ

(
−λξθξtδ

)
eξ(x)+

+
∑
ξ∈N2

2∑
m=1

[
f̂(t, ξ)mm − λξθ

2
ξ

∫ t

0

(t− τ)δ−1Eδ,δ

(
−λξθξ(t− τ)δ

)
f̂(τ, ξ)mmdτ

]
eξ(x).
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

and

D
(α,β)µ
t Hu(x, t) =

1

q

∑
ξ∈N2

2∑
m=1

û0(ξ)mm
(
−λ2ξθξ

)
tγ−1Eδ,γ

(
−λξθξtδ

)
eξ(x)+

+
1

q

∑
ξ∈N2

2∑
m=1

[
λξf̂(t, ξ)mm−

− λ2ξθ
2
ξ

∫ t

0

(t− τ)δ−1Eδ,δ

(
−λξθξ(t− τ)δ

)
f̂(τ, ξ)mmdτ

]
eξ(x).

respectively.

By taking L2-norm, we obtain

t2(1−γ)
∥∥∥D(α,β)µ

t u(t, x)
∥∥∥2
L2(R2)

≤

≤ t2(1−γ)
∑
ξ∈N2

2∑
m=1

|û0(ξ)mk|2
∣∣tγ−1Eδ,γ

(
−λξθξtδ

)∣∣2 |λξθξ|2+
+ t2(1−γ)

∑
ξ∈N2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2+
+ t2(1−γ)

∑
ξ∈N2

2∑
m=1

|λξθξ|2
(
θξ

∫ t

0

∣∣(t− τ)δ−1Eδ,δ

(
−λξθξ(t− τ)δ

)
τ γ−1

∣∣×
×
∣∣∣τ 1−γ f̂(τ, ξ)mk∣∣∣ dτ)2

≤

≤M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2
(

λξθξ
1 + λξθξtδ

)2

+ t2(1−γ)
∑
ξ∈N2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2

+M
∑
ξ∈N2

2∑
m=1

(
max
t∈[0,T ]

∣∣∣t1−γ f̂(t, ξ)mm∣∣∣)2
(
t1−γθξΓ(γ)t

δ+γ−1Eδ,δ+γ(−λξθξtδ)

)2
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

≤M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2 + t2(1−γ)
∑
ξ∈N2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2+
max
t∈[0,T ]

t2(1−γ)
∑
ξ∈N2

(B + 2Bξ2)
−2

2∑
m=1

∣∣∣f̂(t, ξ)mm∣∣∣2 ≤
≤M

(
∥u0∥2L2(R2) + ∥t1−γf(t, ·)∥2L2(R2) + max

t∈[0,T ]
t2(1−γ) ∥f(τ, ·)∥2H−1

H
dτ

)
.

Finally, we get∥∥∥D(α,β)µ
t u(t, x)

∥∥∥2
C1−γ([0,T ];L2(R2))

≤

M
(
∥u0∥2L2(R2) + ∥f∥2C1−γ([0,T ];L2(R2)) + ∥f∥2C1−γ([0,T ];H

−1
H )

)
.

Similarly, one can obtain∥∥∥D(α,β)µ
t Hu(t, x)

∥∥∥2
C1−γ([0,T ];L2(R2))

≤

M
(
∥u0∥2H1

H
+ ∥f∥2C1−γ([0,T ];H1

H) + ∥f∥2C1−γ([0,T ];L2(R2))

)
.

This completes the proof of existence of the Theorem 4.3.1.

Proof of uniqueness of the solution of the forward problem. For proving the

uniqueness of the result, we suppose that there exist two solutions u1(t, x) and

u2(t, x) of the problem (4.3.2). We denote u(t, x) = u1(t, x)− u2(t, x) function

which is solution the problem (4.3.2) in the homogeneous case.

Let us consider the following function

uξ(t) = (u(t, x), eξ(x))L2(R2) , ξ ∈ N2. (4.3.22)

Applying the operator D
(α,β)µ
t to (4.3.22) yields

D
(α,β)µ
t uξ(t) =

(
D

(α,β)µ
t u(t, x), eξ(x)

)
L2(R2)

=

(aD
(α,β)µ
t + q) (Hu(t, x), eξ(x))L2(R2) .

(4.3.23)
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

Due to the self-adjointness property of the operator H and considering the

homogeneous condition in (4.3.2), we have D
(α,β)µ
t uξ + (aD

(α,β)µ
t + q)λξuξ = 0,

lim
t→0+

I
(1−µ)(1−β)
0+ uξ = 0

(4.3.24)

It is not difficult to show that uξ = 0. Then, from (4.3.22) and the completeness

of the system {eξ(x)}ξ∈N2, we obtain u(t, x) ≡ 0 and this proves the uniqueness

of the solution.

4.3.4 Inverse source problem

In this section, we are concerned with an inverse source problem of finding a

pair of functions {u(t, x), f(x)} for the following fractional pseudo-parabolic

equation

D
(α,β)µ
t u(t, x) + (aD

(α,β)µ
t + q)Hu(t, x) = f(x), (t, x) ∈ (0, T )× R2, (4.3.25)

subject to the weighted initial condition

lim
t→0+

I
(1−µ)(1−β)
0+ u(t, x) = u0(x), x ∈ R2, (4.3.26)

where D
(α,β)µ
t stands for the bi-ordinal Hilfer’s fractional derivative in time

variable of orders 0 < α, β < 1 and type 0 ≤ µ ≤ 1 given in (1.3.4), H denotes

the Landau Hamiltonian in space variable in the form of (4.3.3).

In order to solve the problem uniquely, we use the following over-

determination condition

u(T, x) = ψ(x), x ∈ R2, (4.3.27)

where u0(x), ψ(x) are given functions.

Here we remind the space Hs
H given with the norm (4.3.14), for any real

positive number s an operator Hs/2, i.e,

∥g∥Hs
H
= ∥Hs/2∥L2(R2).
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4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

The main result for this section can be summarized in the following the-

orem.

Theorem 4.3.2. Assume that u0 ∈ H1
H, ψ ∈ H1

H. Then, the problem (4.3.25)-

(4.3.27) has a unique pair of solutions {u(t, x), f(x)} determined by

u(t, x) =
∑
ξ∈N2

Tr (û(t, ξ) eξ(x)) , (4.3.28)

where

û(t, ξ) = û0(ξ)t
γ−1Eδ,γ

(
−λξθξtδ

)
+

+ tδEδ,δ+1

(
−λξθξtδ

) (ψ, eξ)L2(R2) − (u0, eξ)L2(R2) T
γ−1Eδ,γ

(
−λξθξT δ

)
T δEδ,δ+1 (−λξθξT δ)

,

and

f(x) =
∑
ξ∈N2

Tr
(
f̂(ξ) eξ(x)

)
, (4.3.29)

where

f̂(ξ) =
q (Hψ, eξ)L2(R2)

λξθξT δEδ,δ+1 (−λξθξT δ)
−
q (Hu0, eξ)L2(R2) T

γ−1Eδ,γ

(
−λξθξT δ

)
λξθξT δEδ,δ+1 (−λξθξT δ)

,

here λξ = qB(1 + 2ξ2) and θξ = (1 + aB(1 + 2ξ2))
−1.

Existence of solution of the inverse problem. As we did in the previous section,

we expand the functions u(t, x) and f(x), since the system of {eξ(x)}ξ∈N2 in the

space L2(R2):

u(t, x) =
∑
ξ∈N2

Tr (û(t, ξ) eξ(x)) , (4.3.30)

and

f(x) =
∑
ξ∈N2

Tr
(
f̂(ξ) eξ(x)

)
, (4.3.31)

respectively, where

û(t, ξ) = (u(t, x), eξ(x))L2(R2) , ξ ∈ N2,
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f̂(ξ) = (f(x), eξ(x))L2(R2) , ξ ∈ N2.

By substituting the above expressions u(t, x) and f(x) into the problem

(4.3.25)-(4.3.27) we obtain the following problem for

D
(α,β)µ
t û(t, ξ) +

qσH
1 + aσH(ξ)

û(t, ξ) =
f̂(ξ)

1 + aσH(ξ)
(4.3.32)

lim
t→0+

I
(1−µ)(1−β)
0+ û(t, ξ) = û0(ξ), ξ ∈ N2, (4.3.33)

û(T, ξ) = ψ̂(ξ), ξ ∈ N2, (4.3.34)

and its solution which can be represented by

û(t, ξ) = û0(ξ)t
γ−1Eδ,γ

(
−λξθξtδ

)
+ θξf̂(ξ)t

δEδ,δ+1

(
−λξθξtδ

)
(4.3.35)

Using the condition (4.3.34), we find f̂(ξ)

f̂(ξ) =
ψ̂(ξ)− û0(ξ)T

γ−1Eδ,γ

(
−λξθξT δ

)
θξT δEδ,δ+1 (−λξθξT δ)

.

We use the self-adjointness property of the operator H and Heξ = B(1 +

2ξ2)eξ, then we have

(u0, eξ)L2(R2) =
q (Hu0, eξ)L2(R2)

λξ
(ψ, eξ)L2(R2) =

q (Hψ, eξ)L2(R2)

λξ
,

where λξ = qB(1 + 2ξ2).

Considering above identities we substitute û(t, ξ) , f̂(ξ) into the expan-

sions (4.3.30) and (4.3.31) then, we find

u(t, x) =
∑
ξ∈N2

Tr (û(t, ξ) eξ(x)) , (4.3.36)

where

û(t, ξ) = û0(ξ)t
γ−1Eδ,γ

(
−λξθξtδ

)
+

+ tδEδ,δ+1

(
−λξθξtδ

) (ψ, eξ)L2(R2) − (u0, eξ)L2(R2) T
γ−1Eδ,γ

(
−λξθξT δ

)
T δEδ,δ+1 (−λξθξT δ)

,
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and

f(x) =
∑
ξ∈N2

Tr
(
f̂(ξ) eξ(x)

)
, (4.3.37)

where

f̂(ξ) =
q (Hψ, eξ)L2(R2)

λξθξT δEδ,δ+1 (−λξθξT δ)
−
q (Hu0, eξ)L2(R2) T

γ−1Eδ,γ

(
−λξθξT δ

)
λξθξT δEδ,δ+1 (−λξθξT δ)

For the denominators for the û(t, ξ) and f̂(ξ), from Lemma 1.4.2, we have

T δEδ,δ+1

(
−λξθξT δ

)
≥

T δ

Γ(δ + 1) + λξθξT δ
≥ T δ

T δ + Γ(δ + 1) + λξθξT δ
≥M0 > 0.

(4.3.38)

It is clearly seen that λξθξ <∞ for ξ → ∞ and since T > T0 ≥ 0, the estimate

(4.3.38) makes sense.

To prove the existence of the solution we show the convergence of the

series of representations of functions u(t, x), D
(α,β)µ
t u(t, x), Hu(t, x) and f(x).

For that reason, first we calculate D
(α,β)µ
t u(t, x), Hu(t, x).

D
(α,β)µ
t û(t, x) = (−λξθξ) û0(ξ)tγ−1Eδ,γ

(
−λξθξtδ

)
+

+ Eδ,1

(
−λξθξtδ

) (ψ, eξ)L2(R2) − (u0, eξ)L2(R2) T
γ−1Eδ,γ

(
−λξθξT δ

)
T δEδ,δ+1 (−λξθξT δ)

,

Now taking L2-norm, for all t ∈ [0, T ], from Lemma 1.4.1 and Lemma

1.4.2, we have

t2(1−γ) ∥u(t, x)∥2L2(R2) ≤ t2(1−γ)
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2
∣∣tγ−1Eδ,γ

(
−λξθξtδ

)∣∣2+
+
∣∣tδEδ,δ+1

(
−λξθξtδ

)∣∣2 ∣∣∣∣∣(ψ, eξ)L2(R2) − (u0, eξ)L2(R2) T
γ−1Eδ,γ

(
−λξθξT δ

)
T δEδ,δ+1 (−λξθξT δ)

∣∣∣∣∣
2

≤M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2
(

1

1 + λξθξtδ

)2

+M
∑
ξ∈N2

2∑
m=1

(
tδ+1−γ

1 + λξθξtδ

)2

×

×

(
M0

∣∣∣(ψ, eξ)L2(R2)

∣∣∣2 +M1

∣∣∣(u0, eξ)L2(R2)

∣∣∣2) ≤
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M
∑
ξ∈N2

2∑
m=1

|û0(ξ)mm|2 +M
∑
ξ∈N2

2∑
m=1

|ψ̂(ξ)mm|2 ≤ M
(
∥u0∥2L2(R2) + ∥ψ∥2L2(R2)

)
Here we take into account that

T γ−1Eδ,γ

(
−λξθξT δ

)
≤ Γ(δ + γ)

Γ(γ)(Γ(δ + γ) + Γ(γ)λξθξT δ)
≤ 1

Γ(γ)

and 1
M0Γ(γ)

≤M1 which comes from Lemma 1.4.2.

Thus, we have

∥u∥2C1−γ([0,T ];L2(R2)) ≤M
(
∥u0∥2L2(R2) + ∥ψ∥2L2(R2)

)
.

In a similar way one can show that∥∥∥D(α,β)µ
t u

∥∥∥2
C1−γ([0,T ];L2(R2))

≤M
(
∥u0∥2L2(R2) + ∥ψ∥2L2(R2)

)
,

∥Hu∥2C1−γ([0,T ];L2(R2)) ≤M
(
∥u0∥2H1

H
+ ∥ψ∥2H1

H

)
,∥∥∥D(α,β)µ

t Hu
∥∥∥2
C1−γ([0,T ];L2(R2))

≤M
(
∥u0∥2H1

H
+ ∥ψ∥2H1

H

)
.

These complete the proof of existence of the solution.

Uniqueness of solution of the inverse problem. Uniqueness of the solution of

the inverse problem (4.3.25)-(4.3.27) can be proved as usual way represented

for the direct problem. Assume {u1(t, x), f1(x)} and {u2(t, x), f2(x)} be two

different pairs of solutions, and let u(t, x) = u1(t, x) − u2(t, x), also f(x) =

f1(x)− f2(x). Then, it is easy to verify that u(t, x) satisfy
D

(α,β)µ
t u(t, x) + (aD

(α,β)µ
t + q)Hu(t, x) = f(x), (t, x) ∈ (0, T )× R2,

lim
t→0+

I
(1−µ)(1−β)
0+ u(t, x) = 0, x ∈ R2,

u(T, x) = 0, x ∈ R2,

(4.3.39)

Consider

û(t, ξ) = (u(t, x), eξ(x))L2(R2) , ξ ∈ N2, (4.3.40)
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and

f̂(ξ) = (f(x), eξ(x))L2(R2) , ξ ∈ N2. (4.3.41)

Taking the fractional derivative and by self-adjointness of the operator H and

and as well as taking into account the homogeneous conditions, we get
D

(α,β)µ
t û(t, ξ) +

qσH
1 + aσH(ξ)

û(t, ξ) =
f̂(ξ)

1 + aσH(ξ)

lim
t→0+

I
(1−µ)(1−β)
0+ û(t, ξ) = 0, ξ ∈ N2,

û(T, ξ) = 0, ξ ∈ N2,

(4.3.42)

According to Lemma 1.3.16, from (4.3.42) we obtain

û(t, ξ) =
f̂(ξ)tδ

1 + aB(1 + 2ξ2)
Eδ,δ+1

(
− qB(1 + 2ξ2)

1 + aB(1 + 2ξ2)
tδ
)

From condition û(T, ξ) = 0, one can easily check that û(t, ξ) = 0 and

f̂(ξ) = 0. The completeness of the set of function {eξ(x)}, ξ ∈ N2 implies the

uniqueness of the solution.

Stability analysis of the inverse source problem

Now we would like to show that the solution of the inverse problem, under

certain conditions of Theorem 4.3.2, depends on continuously on the given

functions.

Theorem 4.3.3. Let {u(t, x), f(x)}, {up(t, x), fp(x)} be two solution pairs of

the inverse problem corresponding to the data (ψ, u0) and its small perturbation

(ψp, u0p), respectively. Then the solution of Inverse Problem (4.3.25)-(4.3.27)

depends continuously on these data, namely, we have

∥u− up∥2C1−γ([0,T ];H1
H) ≲ C

(
∥u0 − u0p∥2H1

H
+ ∥ψ − ψp∥2H1

H

)
and

∥f − fp∥2H1
H
≲
(
∥ψ − ψp]∥2H2

H
+ ∥u0 − u0p]∥2H2

H

)
.

131



4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

Proof. From the definition of the H−Fourier transform

(FHu(t, ·))(ξ) = û(t, ξ) =

∫
R2

u(t, x)eξ(x)dx

and we determine

FH (u(t, ·)− up(t, ·)) (ξ) =
∫
R2

(u(t, x)− up(t, x)) eξ(x)dx

=

∫
R2

u(t, x)eξ(x)dx−
∫
R2

up(t, x)eξ(x)dx

= FHu(t, ·)(ξ)−FHup(t, ·)(ξ) = û(t, ξ)− ûp(t, ξ).

In order to write more concisely the results in Theorem 4.3.2 we assigned

the following notations

λξθξ = Qξ =
qB(1 + 2ξ2)

1 + aB(1 + 2ξ2)
and Tξ =

T γ−1Eδ,γ

(
−QξT

δ
)

T δEδ,δ+1 (−QξT δ)
.

One can easily check that Qξ < ∞ for ξ → ∞ and according to Lemma 1.4.2

we have

|Tξ| =

∣∣∣∣∣T γ−1Eδ,γ

(
−QξT

δ
)

T δEδ,δ+1 (−QξT δ)

∣∣∣∣∣ ≤ T γ−δ−1

∣∣∣∣∣∣∣∣
Γ(δ + γ)

Γ(δ + γ) + Γ(γ)QξT δ

Γ(δ + 1)

Γ(δ + 1) +QξT δ

∣∣∣∣∣∣∣∣ =
=
T γ−δ−1

(
Γ(δ + 1) +QξT

δ
)
Γ(δ + γ)

(Γ(δ + γ) +QξT δ) Γ(δ + 1)
≤M ∗ <∞

From Plancherel’s identity, we have

∥u(t, ·)− up(t, ·)∥2H1
H
=

∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

∣∣∣∣∣∣
∫
R2

(u(t, x)− up(t, x)) e
j
ξ(x)dx

∣∣∣∣∣∣
2

=

∑
ξ∈N2

(B + 2Bξ2)
2 |(FHu(t, ·)(ξ)−FHup(t, ·)(ξ))|2 =
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∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

|û(t, ξ)jj − ûp(t, ξ)jj|2

=
∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

∣∣∣∣∣
(
û0(ξ)jjt

γ−1Eδ,γ

(
−Qξt

δ
)
+

(ψ, eξ)L2(R2)t
δEδ,δ+1

(
−Qξt

δ
)

T δEδ,δ+1(−QξT δ)
− (u0, eξ)L2(R2) Tξt

δEδ,δ+1

(
−Qξt

δ
)

−û0p(ξ)jjtγ−1Eδ,γ

(
−Qξt

δ
)
−

(ψp, eξ)L2(R2)

T δEδ,δ+1(−QξT δ)
tδEδ,δ+1

(
−Qξt

δ
)
+

+(u0p, eξ)L2(R2) Tξt
δEδ,δ+1

(
−Qξt

δ
))∣∣∣∣∣

2

≲

≲
∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

|û0(ξ)jj − û0p(ξ)jj|2
((

Mtγ−1

1 +Qξtδ

)2

+

(
MTξt

δ

1 +Qξtδ

)2
)
+

+
∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

∣∣∣(ψ − ψp, eξ)L2(R2)

∣∣∣2( Mtδ

1 +Qξtδ

)2

.

Considering the weighted space 4.3.15 we get

∥u(t, ·)− up(t, ·)∥2C1−γ([0,T ];H1
H) ≲∑

ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

|û0(ξ)jj − û0p(ξ)jj|2+

+
∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

∣∣∣ψ̂0(ξ)jj − ψ̂0p(ξ)jj

∣∣∣2 ≲
≲
(
∥u0 − u0p∥2H1

H
+ ∥ψ − ψp∥2H1

H

)
.

Finally, we obtain

∥u(t, ·)− up(t, ·)∥2C1−γ([0,T ];H1
H) ≲

(
∥u0 − u0p∥2H1

H
+ ∥ψ − ψp∥2H1

H

)
From the result in Theorem 4.3.2, writing f̂(ξ) in the form

f̂(ξ) =

[
(Hψ, eξ)L2(R2)

T δEδ,δ+1 (−QξT δ)
− Tξ (Hu0, eξ)L2(R2)

]
q

λξθξ

133



4.3. Direct and inverse source problem for 2D Landau Hamiltonian operator

Similarly, one can have a stability result for f(x) and from Plancherel’s

identity, we have

∥f(x)− fp(x)∥2H1
H
=
∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

|f̂(ξ)− f̂p(ξ)|2 =

=
∑
ξ∈N2

(B + 2Bξ2)
2

∣∣∣∣ q

λξθξ

∣∣∣∣2
[

(Hψ, eξ)L2(R2)

T δEδ,δ+1 (−QξT δ)
−

−Tξ (Hu0, eξ)L2(R2) −
(Hψp, eξ)L2(R2)

T δEδ,δ+1 (−QξT δ)
+ Tξ (Hu0p, eξ)L2(R2)

]2
≲

≲
∑
ξ∈N2

(B + 2Bξ2)
2

2∑
j=1

∣∣∣∣ q

λξθξ

∣∣∣∣2
2
∣∣∣(H[ψ − ψp], eξ)L2(R2)

∣∣∣2
|T δEδ,δ+1 (−QξT δ)|2

+

+2T 2
ξ

∣∣∣(H[u0 − u0p], eξ)L2(R2)

∣∣∣2] ≲
≲
∑
ξ∈N2

(B + 2ξ2B)2
2∑
j=1

[∣∣∣(H[ψ − ψp], eξ)L2(R2)

∣∣∣2+
∣∣∣(H[u0 − u0p], eξ)L2(R2)

∣∣∣2].
Here we considered M0 defined by (4.3.38). Finally, we have

∥f(x)− fp(x)∥2H1
H
≤ N

(
∥Hψ −Hψp]∥2H1

H
+ ∥Hu0 −Hu0p]∥2H1

H

)
.

Consequently, we have

∥f − fp∥2H1
H
≲ N

(
∥ψ − ψp]∥2H2

H
+ ∥u0 − u0p]∥2H2

H

)
.

It completes the proof.
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Conclusion of the Chapter 4

In section 4.1 we have analyzed the initial-boundary value problem with a

nonlocal m-point condition in time for the space-degenerate partial differential

equation involving the bi-ordinal Hilfer fractional derivative. The main aim

of the present investigation is that prove the uniqueness and existence of the

result. By using the method of separation variables and considering regular-

ity conditions for sought function we obtain the Legendre ordinary differential

equation and the solution of this equation is called Legendre polynomials which

form a complete orthogonal system on L2(−1, 1) (see [47], p. 38 and [63], p.

511). Uniqueness result of the solution is proved by the completeness proper-

ties of the Legendre polynomials. The proof of the existence of the solution is

based on Weierstrass M-test. In other words, the necessary conditions for given

data are found in order to show that the series which represents the result is

uniformly convergent and in this case the properties of Legendre polynomials

are used wisely. The solution for the non-local problem is presented explicitly.

The section 4.2 is devoted to studying time-dependent inverse source prob-

lem for Langevin-type PDE. The main technique is based on the properties of

Fourier-Legendre series. Unique solvability of the inverse source problem is

proved and sufficient conditions are found for given data.

In section 4.3, we have considered direct and inverse problems for the

pseudo-parabolic equation generated by the Landau Hamiltonian operator H

and the bi-ordinal Hilfer fractional derivative.

First, we recalled known results of the global Fourier analysis for the Lan-

dau Hamiltonian and formulated forward problem. The theorems of uniqueness

and existence of the results for forward problem are proved. In this case, the

generalized solutions are presented which belong to different spaces according

to the order of fractional derivative.
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Second, the inverse problem is considered for the 2D Landau Hamiltonian

operator H and to find the right-hand side of the equation, we have used the

value of unknown function at the final time. By using the Fourier analysis for

the operator H the theorems of uniqueness and existence of for the results of

the inverse problem are proved. It is also presented the stability result for the

inverse problem.
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The dissertation work is devoted to investigations of direct and inverse problems

for the partial differential equations with fractional order integral-differential

operators.

In the first Chapter of this dissertation, we have introduced some primary,

auxiliary results used in the dissertation. Section 1.1 is devoted to giving brief

information on the historical survey of fractional calculus. In section 1.2 some

important functional spaces have been introduced. In section 1.3 we give the

definitions and useful properties of fractional integral and differential operators

such as the Riemann-Liouville, Caputo, right and left-hand-sided bi-ordinal Hil-

fer fractional differential operator and the regularized Caputo-like counterpart

of the hyper-Bessel fractional differential operator. Section 1.4 describes the

essential properties of the Mittag-Leffler function.

The main results of the research are as follows:

In the second Chapter, we dealt with investigating the boundary value

problem for the mixed equation involving the subdiffusion equation with the

hyper-Bessel fractional differential operator and classical wave equation. In

section 2.1 we have considered the analogy of the Tricomi problem and proved

the uniqueness and existence of the solution. In section 2.2 we have obtained

the existence and the uniqueness results for the Frankl-type problem considered

for the aforementioned mixed equation. We need to mention that these two

problems considered in the same domain and the same equation.
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The third Chapter of the present dissertation is devoted to studies of non-

local problems for the mixed equation involving subdiffusion equation generated

by the hyper-Bessel fractional differential equation and fractional wave equation

with the bi-ordinal Hilfer fractional derivative. In section 3.1 we presented the

theorem about uniqueness and existence of solution of the nonlocal problem for

the mixed equation. Section 3.2 differs from previous section with using Bessel

operator in the space variable and applying the right-hand-side bi-ordinal Hilfer

fractional derivative. We considered the nonlocal problem for mixed equation

with the Bessel operator and established the connection between the result of

uniqueness and existence and given data. Section 3.3 is devoted to analyzing

the problem based on the combination of the elements of the two problems con-

sidered in previous sections. Necessary conditions are found for given functions

to prove the uniqueness and existence of the solution.

In the fourth chapter, we have considered direct and inverse problems

for the pseudo-parabolic equation with fractional order derivative in the time

variable. Section 4.1 discusses the m-point nonlocal problem for the fractional

Langevin-type partial differential equation in the case of two variables. The

uniqueness and existence results of the nonlocal boundary value problem are

presented. Additionally, determining the time-dependent inverse source prob-

lem is investigated in section 4.2. With help of the standard procedure of the

Fourier method, the theorem of uniqueness and existence of the solution to the

inverse source problem is proved.

In section 4.3 we have analyzed the direct and inverse problems for the

pseudo-parabolic equation generated by the Landau Hamiltonian operator. The

global Fourier analysis developed in [99] played an essential role in considering

direct and inverse problem. The necessary conditions for given data are pre-

sented to obtain the existence and uniqueness of the generalized solutions for
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the direct and inverse problems. In the inverse problem, the value of a sought

function at the final time is used as an overdetermination condition. Stability

analysis is also developed for the inverse source problem.

Possible future work with studying boundary value problems for mixed

equation might be to propose and analyze the problem on two mixed domains

connected on the any arbitrary line (not straight) of type changing. Precisely, in

chapter 2 and chapter 3, we consider the the conjugation conditions on the line

t = 0 and some interval x ∈ I and by using different approach we can develop

by taking the gluing conditions on the line of type changing as AB = {(x, t) :

t = ϕ(x), x ∈ I}. In addition, considering the problems aforementioned in this

thesis we can solve the problems when the right side of the equation might

depend on an unknown function like f = f(x, t, u). In this case, we need to

use different methods for the unique solvability of the problem, for instance,

the homogenization function method, variational approach or other numerical

techniques.
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