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Abstract 24 

Advanced chemical and mineralogical techniques are necessary to further our understanding of ore 25 

deposits and their genesis. Using X-ray micro-computed tomography (µCT) and an automated 26 

mineralogy (AM) system based on scanning electron microscopy with an energy dispersive X-ray 27 

spectrometer (SEM-EDX), we investigated the internal mineralogy of Sn-Nb-Ta pegmatites. This paper 28 

presents a comprehensive methodology to quantify and visualize the mineral relationships of ore 29 

samples in three-dimensional space at the microscopic scale. A list of all possible minerals present, a 30 
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so-called mineral library, was deduced with a SEM-based AM system and served as the ground truth 31 

for the interpretation of µCT data. A reconstructed attenuation coefficient (µrec) was calculated for mineral 32 

phases that have been identified and provided a most correct guidance to differentiate between minerals 33 

for a given experimental µCT setup. Despite some limitation in sample size and mineral identification, 34 

these complementary techniques enabled the differentiation of a Fe-Li mica from biotite based on the 35 

chemical attribution of lithium to µrec. Using statistical descriptors, we quantified the general orientation 36 

of individual mineral phases and their spatial correlation to comply with the needs of processing large 37 

datasets at a low computational expense. Applying this comprehensive methodology to a case study 38 

demonstrates the possibilities of combining a SEM-based AM system with µCT analysis to investigate 39 

ore samples at the microscopic scale. 40 

 41 

Keywords 42 
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 45 

INTRODUCTION 46 

In this ever-changing world, we are more and more confronted with the challenges of future mineral 47 

supply to an accelerating global population growth (Ali et al., 2017). In addition, modern society relies 48 

increasingly on the development of renewable energy sources and other high technology applications 49 

that require not only a vast amount of common commodities (e.g., copper, steel), but also a growing 50 

number of critical low-volume elements (Hayes & McCullough, 2018; Wellmer et al., 2019). The detailed 51 

characterization of the morphology, texture, mineralogy, and chemistry of different desirable minerals, 52 

but also the bulk minerals in which they are embedded, plays an important role in the optimal recovery 53 

of critical raw materials (Reuter et al., 2019). 54 

The mineralogical study of ore deposits conventionally relies on the macroscopic observations of hand 55 

specimens collected during fieldwork and on microanalytical two-dimensional (2D) techniques to 56 

characterize the chemical, mineralogical, and structural variations of millimeter- to centimeter-sized 57 

samples, and this with a spatial resolution down to the microscopic scale (Pearce et al., 2018). 58 

Microscopic observations are often limited to optical microscopy and different microbeam analytical 59 

techniques, combined with integrated imaging techniques like scanning electron microscopy (SEM). 60 
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SEM is often assisted by 2D elemental mapping using energy-dispersive (EDX) or wavelength-61 

dispersive (WDX) X-ray spectrometers or complemented with data from an electron probe microanalyzer 62 

(EPMA) acting as an analytical tool to non-destructively determine the chemical composition of small 63 

volumes of solid materials (Reed, 2005). SEM may also be combined with a focused ion beam (FIB-64 

SEM) for serial FIB milling of the sample surface to acquire a sequence of cross-sectional SEM images 65 

and thus a three-dimensional (3D) visualization of the sample (Gu et al., 2020). Often, additional 66 

structural and analytical chemical methods, such as X-ray diffraction (XRD) and X-ray fluorescence 67 

(XRF), are used to determine the mineralogical and chemical composition of the samples. 68 

Although these techniques are well-known and commonly used for the characterization of geological 69 

samples, there is a need for non-destructive characterization that provides in 3D the structural, 70 

mineralogical, and chemical composition of the interior of geological samples (Wang & Miller, 2020). 71 

The accurate 3D mineralogical and geochemical characterization is crucial for improving the 72 

understanding of ore genesis (Godel, 2013), and is particularly applicable to petrological and genetic 73 

investigations of low-grade fine-grained ore deposits or nugget-type of mineralization (Kyle & Ketcham, 74 

2015). This urges the need for the development of new and innovative technologies for adequate ore 75 

characterization (Becker et al., 2016; Gessner et al., 2018) and associated data analysis (Guntoro et 76 

al., 2019a). 77 

X-ray micro-computed tomography (μCT) is a non-destructive X-ray imaging technique that allows for 78 

the analysis of the interior of geological samples in 3D. This technique has the ability to eliminate the 79 

stereological errors from conventional 2D image analysis and to leave the samples intact for further 80 

sample characterization (Guntoro et al., 2019a). This offers the possibility to study mineral relationships 81 

in 3D (e.g., Jardine et al., 2018) and acquire quantitative estimations of mineral shape, size, and 82 

orientation (e.g., Ketcham & Mote, 2019). The principle of μCT is based on the calculation of the X-ray 83 

linear attenuation coefficient (µlin), which depends on the material properties (effective atomic number, 84 

density) and the incident energy of the X-ray beam. Typical geological sample sizes for μCT imaging 85 

are between 1 mm and 5 cm (Cnudde & Boone, 2013), where a trade-off has to be made between the 86 

transmitted X-ray photon flux and resolution. The application potential of this technique has been 87 

reviewed within geosciences (Cnudde & Boone, 2013; Kyle & Ketcham, 2015; Wang & Miller, 2020) and 88 

has established its place in the contribution to geological studies. Processed μCT data provides images 89 

of the mineral relationships in 3D together with statistical parameters that are of interest for studies of 90 
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ore-forming processes, extractive metallurgy, and metal production engineering (Pearce et al., 2018; 91 

Wang & Miller, 2020). Since the main drawback of standard μCT is the absence of chemical information, 92 

it is currently only possible to segment various compounds based on different X-ray attenuation and/or 93 

shape properties (Gunturo et al., 2019a). 94 

Despite continuous technological and computational advances (Wang & Miller, 2020), most applications 95 

in mineral characterization are rather limited to the 3D segmentation between the major phases, i.e., 96 

pores, low-density phases, and high-density phases (Guntoro et al., 2019a). Therefore, recent work in 97 

μCT focuses on the development of image post-processing procedures (Becker et al., 2016; Guntoro et 98 

al., 2019b), whether or not together with complementary microscopic techniques (De Boever et al., 2015; 99 

Laforce et al., 2016; Reyes et al., 2017; Warlo et al., 2021), to differentiate between complex intergrown 100 

mineral phases. In the future, the integration of machine learning and artificial intelligence is considered 101 

to be crucial for the generation of mineralogical information from standard μCT data (Guntoro et al., 102 

2019a). Various techniques have been developed to extract mineral features from µCT datasets 103 

(Jardine et al., 2018). Existing techniques are, however, currently limited to the computational expense 104 

of processing large datasets (Guntoro et al., 2019a) and are just now slowly starting to emerge (e.g., 105 

Strzelecki et al., 2021). 106 

This study aims to develop a comprehensive methodology by combining state-of-the-art µCT and an 107 

SEM-based automated mineralogy (AM) system to characterize the mineralogy of ore samples in 3D. 108 

We present a test study on pegmatite-hosted Sn-Nb-Ta mineralization from the Mesoproterozoic 109 

orogenic belts of Central Africa (Dewaele et al., 2011; Melcher et al., 2015), where we will overcome 110 

some of the traditional issues to characterize the internal geochemical and mineralogical composition in 111 

3D at the microscopic scale. 112 

 113 

MATERIALS AND METHODS 114 

Samples 115 

Samples were selected from the intensively studied Sn-Nb-Ta mineralization of the Gatumba area in 116 

western Rwanda, Central Africa (Lehmann et al., 2008; Dewaele et al., 2011; Hulsbosch et al., 2013; 117 

Lehmann et al., 2014; Hulsbosch & Muchez, 2020). This mineralization consists of millimeter-sized 118 

cassiterite and columbite-tantalite minerals hosted within much less dense gangue minerals (mainly 119 

quartz, feldspars, and muscovite) (Dewaele et al. 2011). In an individual pegmatite, a mineralogical and 120 
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geochemical zonal development is observed from margin towards the center, with a hydrothermal 121 

overprint completely altering the original pegmatite composition at some locations, (Dewaele et al., 122 

2011; Hulsbosch & Muchez, 2020). The exact spatial relationship between the different ore minerals is 123 

difficult to observe with standard techniques, and not exactly known. 124 

In addition to representative polished sections with a higher concentration of ore minerals for reflected 125 

light microscopy and SEM-based AM analyses, rock samples were specifically prepared for µCT 126 

analysis. Since cylindrical samples have the most efficient geometry for the cone beam configuration 127 

employed in most modern laboratory µCT systems (Kyle & Ketcham, 2015), drilled core samples were 128 

made (2 cm in diameter). These drilled core samples were afterwards also prepared to be suitable for 129 

further analyses with optical microscopy and SEM-based AM (i.e., polishing of the top and bottom 130 

surface). Results will be further discussed by means of two representative cylindrical samples A and B 131 

acquired from one of the pegmatite samples from the Gatumba area, of which sample A is used as an 132 

example to discuss the process of 3D mineral phase segmentation and feature extraction. 133 

 134 

Optical and Scanning Electron Microscopy 135 

Reflected light microscopy was carried out at Ghent University, using a Nikon Eclipse LV100N POL 136 

polarizing petrographic microscope, as a preliminary step to identify Sn-Nb-Ta-(W)-bearing ore minerals 137 

and their interrelationships (e.g., identification of possible mineral inclusions). SEM-EDX was performed 138 

at Ghent University using TESCAN Integrated Mineral Analyzer (TIMA-X) equipped with a field emission 139 

gun and one EDX detector. TIMA-X is a system optimized to rapidly acquire low-count spectra (Hrstka 140 

et al., 2018) and combines calibrated back-scattered electron (BSE) imaging and EDX analysis for 141 

mineral classification training using an AM system. The mineral distribution maps are based on the 142 

comparison of EDX spectra obtained from each pixel with a classification scheme, where a set of rules 143 

are designated to the calibrated line intensities of the different elements (see also Hrstka et al., 2018). 144 

The working conditions were: an acceleration voltage of 25 kV, a working distance of 15.0 mm, and a 145 

spatial resolution between 9 and 18 µm for both BSE images and EDX spectra. The energy resolution 146 

of the EDX spectra, as measured at Mn Kα, was ±140 eV. The acquired mineralogical information serves 147 

as a mineral library for the interpretation of the µCT data. 148 

 149 

X-ray Micro-Computed Tomography (μCT) 150 
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The μCT analyses were performed at the Ghent University Centre for X-ray Tomography 151 

(www.ugct.ugent.be). The High-Energy CT system Optimized for Research or HECTOR (Masschaele 152 

et al., 2013) was used under the scanning conditions as summarized in Table 1. Reconstructions of the 153 

projectional radiographs, acquired using the traditional cone-beam µCT setup, were performed with the 154 

Octopus reconstruction software (Vlassenbroeck et al., 2007). This software tool allows for pre-155 

processing corrections (e.g., flat field correction and ring filter) and corrections during the reconstruction 156 

(e.g., beam hardening correction). Image analysis was executed in the Fiji/ImageJ software (Schindelin 157 

et al., 2012) using a 3D trainable Weka Segmentation plugin (Arganda-Carreras et al., 2017) for the 158 

mineral phase segmentation and by using executable scripts to automate certain repetitive steps. The 159 

different steps that were undertaken to investigate the different mineral phases in 3D are discussed 160 

below and summarized in Fig. 1. 161 

Information about the mineralogical composition was obtained during optical microscopy and TIMA-X 162 

analyses of the polished sections and was supplemented by observations from previous research 163 

(Lehmann et al., 2008; Dewaele et al., 2011; Hulsbosch et al., 2013; Melcher et al., 2015; Hulsbosch & 164 

Muchez, 2020). The mineralogical composition, material density (ρ), and X-ray energy determine the 165 

linear attenuation coefficient (µlin) and provide insight into the capability of µCT to segment minerals with 166 

a similar attenuation (Fig. 2a). However, in lab-based µCT a polychromatic source is used and the 167 

energy dependency of µlin needs to be taken into account. Therefore, the theoretical µlin was recalculated 168 

for the given experimental setup (Table 1) using the in-house developed software Arion (Dhaene et al., 169 

2015). This value is hereafter referred to as the reconstructed attenuation coefficient (µrec). The 170 

calculations of µrec take into account the spectral sensitivity of the detector and the effects (e.g., metal 171 

artifacts and beam hardening) induced by the polychromaticity of the X-ray source. Therefore, properties 172 

like sample size, shape, elemental composition and density are taken into account in the simulation tool. 173 

For a given setup, µrec serves as a more accurate depiction of the possible segmentation between the 174 

different mineral phases (e.g., µrec of schorl and apatite was here too similar to be segmented using this 175 

setup; Fig. 2b) and the interpretation of the different mineral interrelationships. 176 

Despite the measures taken to prevent imaging artifacts (e.g., Al filter, beam hardening corrections 177 

during the reconstruction), and thus to eliminate µrec variability, the final µCT image vertically still displays 178 

variable grayscale values throughout the slices for the same mineral phase (see also Fig. 3 in Guntoro 179 
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et al., 2019b). A region of interest, including more than 80% of the dataset, was selected to avoid mineral 180 

phase segmentation issues. 181 

Since the µCT images contain numerous mineral phases and, thus, numerous grey values (Fig. 3a), 182 

prior noise filtering was not considered, as the variance would also be taken into account during the 183 

segmentation step (see below). As a first step of data preparation, automatic thresholding of the data 184 

was performed with Otsu’s method (Otsu, 1979) to separate the background from sample data. This 185 

was followed by a four times 1-pixel erosion operation (binary morphology) to avoid false segmentation 186 

at the sample borders that could not be resolved with beam hardening corrections (Fig. 3b). 187 

Segmentation was then performed using Weka 3D segmentation (Arganda-Carreras et al., 2017) within 188 

the Fiji environment where a set of 50 images was used to train the following features: edges (canny 189 

edge detection) and texture filters (mean, variance) in a fast random forest classifier. The training of the 190 

classifier was adopted iteratively by using input from corresponding mineral distribution maps acquired 191 

with TIMA-X until an accurate segmentation result was achieved on the subset (Fig. 3c). The trained 192 

classifier was then used to automatically segment each corresponding dataset (over 1000 images each). 193 

A tiling algorithm, reducing the memory requirements (Arganda-Carreras, 2018), was applied to prevent 194 

running into out-of-memory exceptions when processing large 3D datasets (> 3GB) on a regular 195 

desktop. Previously, this algorithm has already been successfully used in e.g., Callow et al. (2020). 196 

Post-processing steps were undertaken for each individual segmented phase to avoid partial volume 197 

effects at boundaries between two segmented phases (Fig. 3d). A boundary between a high-density 198 

phase and a low-density phase would be incorrectly interpreted as an intermediate density phase and 199 

was therefore removed from the data using binary morphology operations (see detailed excerpt in Fig. 200 

3e-g). 201 

 202 

Feature Extraction 203 

Segmentation of the µCT images resulted in a dataset of labeled images, where each label represented 204 

the 3D volume of a segmented phase. The Pearson correlation coefficient (Eq. 1) was calculated to 205 

represent the interrelationships between two different segmented phases. This measure is defined as 206 

the ratio between the covariance of two variables and the product of their standard deviations. For two 207 

phases X and Y in (Eq. 1), metrics are calculated using the surface areas of two phases which are 208 

compared along a defined direction (see below) and are normalized after the total area of the sample 209 
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within each 2D slice (which translates as a comparison of area percentages). Values of the Pearson 210 

correlation coefficient may range between -1 (negative linear correlation) and 1 (positive linear 211 

correlation). A correlation coefficient of 0 implies that there is no linear dependency between the two 212 

phases in that direction. 213 

𝜌(𝑋, 𝑌) =  
𝑐𝑜𝑣(𝑋,𝑌)

𝜎(𝑋)𝜎(𝑌)
  (Eq. 1) 214 

The coefficient of variation (Eq. 2) was calculated to represent the general orientation of each individual 215 

segmented phase. This measure is defined as the ratio of the standard deviation (σ) to the mean (µ) of 216 

the previously mentioned area percentages calculated along a defined direction. The unit of this 217 

measure is dimensionless and is thus of interest to compare numerical values of different populations 218 

with various averages. The interpretation of the data is based on the fact that higher values are obtained 219 

along the longitudinal axis of a phase and lower values are obtained perpendicular to this axis (see Fig. 220 

4). Phases which have no preferential elongation/orientation, will display similar (low) values for each 221 

measured direction. 222 

𝑐𝑣 =
𝜎

µ
=

√∑ (𝑥𝑖−µ)2
𝑖 𝑝(𝑥𝑖)

µ
  (Eq. 2) 223 

As previously mentioned, these statistical measures are calculated along a defined direction. Images 224 

are usually stored as a stack of virtual 2D slices perpendicular to the rotational axis or Z-axis, but 225 

calculations for the 2D slices along the Z-axis would only give 1D information. For a stereographic 226 

depiction of a possible variety in statistical measures along different predefined directions, and thus in 227 

3D, the images needed to be resliced along all possible directions. Orientations will be presented in a 228 

spherical coordinate system using the azimuth on the XY plane and the inclination from the Z-axis (Fig. 229 

5a). Using a spacing of 15° along the azimuth on the XY plane (360°) and the inclination from the Z-axis 230 

(90°) gives 175 predefined directions. A script was written in Fiji/ImageJ to automatically reslice the 231 

images over all predefined directions and calculate along each defined direction the surface areas for 232 

each segmented phase. Data is correspondingly represented in a polar rose chart using Plotly Python 233 

Open Source Graphing Library (Fig. 5b). 234 

 235 

RESULTS 236 

Mineral Distribution Maps 237 

The mineral content of the drilled core samples (based on mineral distribution maps acquired with TIMA-238 

X and sorted according to µrec; Fig. 2b) consists of kaolinite, beryl, albite, quartz, K-feldspar, muscovite, 239 
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Fe-Li mica, schorl, apatite, zircon, barite, and columbite-tantalite. The matrix occurring between the 240 

larger-sized minerals of these samples consisted almost entirely of quartz and albite, but often contained 241 

traces of K-feldspar occurring together with beryl. Muscovite is next to quartz and albite an important 242 

constituent and was observed to be often overgrown by an albite matrix (Fig. 6b). Muscovite may range 243 

in size from centimeter-size to aggregates of submillimeter-sized crystals. Kaolinite is closely associated 244 

with muscovite, but was only present in minor amounts. Besides muscovite (Fig. 7a), another mica was 245 

present to a much lesser extent and has been identified as an Fe-Li mica (Fig. 7b). Tourmaline occurs 246 

as grouped acicular crystals. EDX analyses of tourmaline showed significant amounts of Fe, Al, and to 247 

a lesser extent Na and Mg. Therefore, tourmaline was identified as a Fe-rich member of the schorl-248 

dravite series (cf., Hulsbosch et al., 2013). Apatite mostly occurred as dispersed submillimeter-sized 249 

minerals within the matrix. One of the investigated polished sections of sample A rather displayed a 250 

grouped occurrence of apatite grains (Fig. 6b). Barite was observed as a small veinlet (400 µm) along 251 

the cleavage planes of muscovite and also as an inclusion within tourmaline. Small columbite-tantalite 252 

inclusions (18 µm) were observed in both the albite-quartz matrix and in association with muscovite 253 

grains. Cassiterite has not been observed during TIMA-X mapping. 254 

 255 

X-ray Micro-Computed tomography (µCT) 256 

Comparison of Mineral Distribution Maps with µCT Data 257 

The µCT images of the drilled core samples (Fig. 6d) were interpreted by comparison with the equivalent 258 

mineral distribution maps acquired with TIMA-X (Fig. 6b) and by using the calculated µrec values of the 259 

occurring minerals for the given experimental setup (Fig. 6c). 260 

The matrix of the samples consisted almost entirely of two phases that were close to each other in 261 

greyscale values, but were still visually distinguishable based on slight differences in greyscale values 262 

(Fig. 8a). These mineral phases were identified as quartz and albite and occurred as interconnected 263 

phases throughout the drilled core samples. The next main mineral phase identified in the µCT data was 264 

muscovite. Muscovite occurred as large centimeter-sized scaly mineral fragments, but also as much 265 

smaller fragments (often as stellate aggregates) disseminated in the matrix. It was often observed for 266 

the large scaly muscovite fragments that they were overgrown by a small border of albite matrix, 267 

regardless of being located within a quartz-rich matrix. Some of the larger muscovite fragments were 268 

altered and only displayed relicts of the original shape. K-feldspar was, similar to observations with 269 
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TIMA-X, found to be associated with beryl within the samples (Fig. 8a). Euhedral crystals of K-feldspar 270 

and beryl were only observed when occurring with(in) muscovite and/or neighbored by schorl. Apatite 271 

occurred mostly as a minor phase, but was widely distributed throughout the samples. Together with 272 

TIMA-X observations (see also Fig. 6), it was observed that apatite may occur as well as grouped 273 

fragments that were strongly intergrown with stellate aggregates of muscovite. Minor occurrences of 274 

dense minerals, which appeared to be mainly zircon grains, when compared with corresponding mineral 275 

distribution maps, were strongly correlated to these grouped occurrence of apatite grains. The 276 

prismatic/acicular crystal habit of schorl (Fig. 8a) allowed to differentiate these mineral fragments from 277 

apatite. Schorl was unaffected by the presence of other mineral phases and maintained its mineral 278 

shape. Clusters of schorl fragments are unobstructed by the presence of muscovite fragments nor of 279 

the main matrix constituents. One remarkable observation was the presence of a two centimeter long 280 

schorl fragment crosscutting sample B (Fig. 8a-b). There were several mineral phases associated with 281 

this schorl crystal, which were, from low density to high density, albite-muscovite-schorl or at least 282 

minerals with a similar grey value. Since this was an important observation, sample B was re-polished 283 

to acquire an additional mineral distribution map for this slice to confirm the µCT observations. It is 284 

important to note that next to albite, quartz was also identified as a low-density phase within this schorl 285 

crystal. The observed occurrence of a small barite vein as a possible mineral inclusion within a 286 

muscovite grain during TIMA-X analysis was confirmed to be a real mineral inclusion during µCT 287 

analyses. 288 

 289 

Segmentation of Mineral Phases 290 

Based on the observations acquired for the two samples and the predetermined µrec values (Fig. 2b), 291 

different phases were selected for segmentation using the proposed methodology. An example of a 292 

possible output for sample A is presented below. 293 

The group of identified mineral phases was reduced to the following 5 segmented phases (from low to 294 

high µrec): albite, quartz, muscovite, schorl/apatite and dense mineral phases (Fig. 9), with a vol% of 295 

respectively 43.51, 43.43, 11.36, 1.60 and 0.04, with respect to the sample data after a first step of data 296 

preparation. The remaining 0.06 vol% was removed from the dataset through post-processing to remove 297 

false mineral phase identification at the boundaries between two segmented phases. The difference in 298 

greyscale value and µrec of schorl and apatite is limited. Apatite is expected to be only slightly higher in 299 
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greyscale value (see Fig. 2b) and were therefore grouped because of their similarity. The dense mineral 300 

phase consists of all identified mineral phases for which µrec is higher than the other segmented phases 301 

(i.e., denser than schorl/apatite). These phases included ore minerals and high-density accessory 302 

minerals (in particular zircon) that were observed during mineral mapping. It must be noted that this 303 

sample was also re-polished to chemically investigate the largest grain that was classified as a dense 304 

mineral phase using TIMA-X (Fig. 9). It, however, displayed relatively higher greyscale values, and thus 305 

a higher µrec value, than zircon. This grain has been identified as a Nb-Ta-U oxide mineral and indeed 306 

not as zircon. This Nb-Ta-U oxide, or previously described in Lehmann et al. (2008) as U-rich microlite, 307 

is one of the more rare Nb-Ta minerals present in the mineralized pegmatites, compared to the more 308 

common columbite-tantalite solid-solution series. However, this mineral could be locally concentrated in 309 

specific zones (Lehmann et al., 2008), and has been described to be characteristic for the Nb-Ta 310 

mineralization of the Gatumba area (Melcher et al., 2015). 311 

 312 

Interrelationships and Orientation of Mineral Phases 313 

Sample A presented in the previous section was further analyzed using a correlation matrix (Fig. 10) to 314 

investigate possible spatial correlations. For the 5 different segmented phases, 10 unique 315 

interrelationships could be calculated. The coefficient of variation (Fig. 11) was calculated for the 5 316 

different segmented phases, which may give insights in the possible preferential orientation of minerals 317 

to deduce possible oriented growth or the so-called unidirectional solidification texture (UST) (Shannon 318 

et al., 1982). One of the main observations from Fig. 10 was the omnidirectional strong negative 319 

correlation between albite and quartz, which is to a lesser extent also observable between albite and 320 

muscovite. On the other hand, a positive (omnidirectional) correlation was observed between 321 

schorl/apatite and the dense mineral phase, which is here mostly zircon. In data plots of the correlation 322 

matrix where muscovite was considered (Fig. 10), the correlation was strongly influenced by the 323 

coefficient of variation of muscovite (Fig. 11). General low cv values at an inclination of 90° were 324 

especially reflected in the correlation between muscovite and schorl/apatite and between muscovite and 325 

the dense mineral phase. The same was observed for cv values of the dense mineral phase, where the 326 

deviating value at an azimuth of 90° and inclination of 45° is well reflected in the correlation matrix 327 

involving the dense mineral phase. A relative high cv value at this orientation can be explained by the 328 

large Nb-Ta-U oxide grain (see Fig. 11) included within the group of otherwise much smaller dense 329 
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mineral grains. The influence of cv was less pronounced for albite and quartz, since both phases only 330 

displayed low cv values within a small range (respectively 0.154-0.45 and 0.127-0.372). 331 

 332 

DISCUSSION 333 

The combination of different imaging techniques, both 2D and 3D, has a strong application potential for 334 

the analysis of the mineralogy and geochemistry of rock samples down to the microscopic scale. 335 

Extending this into 3D allows for the study of mineral relationships and the quantification of 336 

morphological characteristics of minerals without stereological errors from 2D estimations. Recent 337 

existing practices in analyzing ore samples (e.g., Guntoro et al., 2019b; Warlo et al., 2021) demonstrate 338 

both the shortcomings as well as the benefits from combining SEM-EDX with µCT. 339 

Polished sections were here analyzed with SEM-EDX to classify minerals with an AM system and the 340 

obtained mineral distribution maps were used to interpret their distribution in 3D. Sample preparation is 341 

especially necessary to perform SEM-based AM analyses, as this technique requires a well-polished 342 

surface coated with a sputtered carbon coating to produce high quality images (Reed, 2005). Besides, 343 

commercial SEM instrumentation often comes with standard sample holders, which limits the possible 344 

3D volumes to be analyzed with both SEM and µCT. For our system, the diameter per sample is 345 

standard one inch and the sample is also limited in height to fit in the vacuum chamber. In addition, 346 

when scanning polished samples with µCT, image artifacts occur at the surface of samples due to the 347 

so-called cone-beam effect (Cnudde & Boone, 2013; Guntoro et al., 2019b). This effect will eventually 348 

alter the greyscale values and thus also limit the possible segmentation. To anticipate this, core samples 349 

with the same diameter, but extended in length, were scanned prior to any sample preparation. This 350 

allowed us to select a region of interest from the µCT data, in accordance with the polished sample, 351 

without having these image artifacts at the polished surfaces. By doing this, the information from an 352 

equivalent µCT slice of the polished surface can then be used to train the 3D Weka segmentation. 353 

Alternatively, optimized image acquisition (De Witte, 2010) and post-processing steps (Kazhdan et al., 354 

2015) could be undertaken to remove some of these image artifacts at the surface of samples. 355 

Despite the above-mentioned limitations of combining µCT with SEM-EDX, a SEM-EDX based AM 356 

system proved to be an important and needed part of the methodology to provide background 357 

information for the visual interpretation and/or segmentation of µCT data. SEM-based AM systems are 358 

commercially more and more well-established (Graham, 2017) and are increasingly applied in geological 359 
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studies (e.g., Warlo et al., 2019; Keulen et al., 2020). For minerals with a similar chemical composition, 360 

but with different crystalline structures (e.g., hematite and magnetite) or minerals which are not 361 

straightforward to classify using existing SEM-based AM systems (e.g., mineral polymorphs), one could 362 

consider XRD. XRD is a routinely performed, but destructive, laboratory technique that already has 363 

proven to be an essential tool for phase identification within geosciences (Artioli, 2018). Advanced 364 

developments in X-ray microscopy enabled the establishment of laboratory based diffraction contrast 365 

tomography (Holzner et al., 2016) which opens opportunities for further research in 3D materials 366 

science. An example where this could have been of benefit here, is the identification of the mineral that 367 

strongly resembled biotite in EDX spectrum (Fig. 7b), but which showed to have a density that was too 368 

low and, therefore, was classified as a Fe-Li mica. Although the Li-content of this mineral was not 369 

measurable with the used SEM equipment, as the elemental range of EDX is limited from beryllium to 370 

uranium, this chemical information could be inferred from the combination of SEM-based AM, µCT 371 

analyses and previous observations. Solely based on EDX spectra (Fig. 7b), this mineral could be 372 

interpreted as the iron end-member (annite) of the biotite mica group. However, the relative position of 373 

µrec in the µCT images shows that its value is too low to be classified as biotite. The calculated µrec is 374 

lower than these of apatite and schorl, which suggests the presence of a low atomic number element 375 

that significantly lowers its attenuation coefficient. Lithium is such an element that is known to be 376 

incorporated into mica minerals of corresponding pegmatites (Hulsbosch et al., 2013). Lepidolite and 377 

zinnwaldite, respectively containing 3.70-5.42 wt% and 2.19-3.72 wt% of Li2O (John, n.d.), are the two 378 

most common Li-micas in cassiterite and topaz-bearing pegmatites (Dill, 2010) and were previously also 379 

observed in this mineralization (Hulsbosch et al., 2013). The relative position of µrec matches well with 380 

the simulated µrec value of zinnwaldite (Fig. 2b) and excludes lepidolite (µrec of lepidolite is too low). In 381 

this case, even powder XRD analysis would not give a decisive answer due to its resemblance with 382 

other mica minerals, especially when the co-existence of other micas is inevitable in the sample 383 

preparation. Only chemical data from e.g., laser ablation inductively coupled plasma mass spectrometry 384 

could give a decisive answer, but techniques like this are often not available or are too costly for routinely 385 

analyses. 386 

By using XRD analysis, it would have been possible to narrow the possibilities down to a more specific 387 

mineral or mineral group. Although this may be of importance for the mineralogical interpretation of the 388 

data, this will hardly influence the segmentation of the µCT data. For the example of hematite (Fe2O3; ρ 389 
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= 5.23 g/cm³) and magnetite (Fe2+Fe2O4; ρ = 5.20 g/cm³), µrec will be here almost the same (respectively 390 

2.81 and 2.83). 391 

The main advantage of mineral distribution maps acquired with TIMA-X is the possibility to directly 392 

correlate this 2D mineralogical information with a 3D µCT dataset and to re-polish the sample to a 393 

specific section of interest for verification. As an example, the mineral assemblage in Fig. 8 was checked 394 

to see if the assumptions that were made from µCT images were correct. It is the interpretation of these 395 

sought for 3D mineral assemblages that will help to further refine the paragenesis of ore deposits. On 396 

top of that, similar to a mineral standards library that is built within AM systems, a list of identified 397 

minerals can be deduced to build a library of linear attenuation coefficients µlin (see also Fig. 2a). Once 398 

all possible minerals encountered for the ore deposit under consideration are known, a library of µrec 399 

values can be calculated for a given µCT setup. It is just so that calculations of the linear attenuation 400 

coefficient µlin are not sufficient to predict the behavior, or better the produced greyscale values, of the 401 

different minerals in the µCT images. As visualized in Fig. 2a, this value depends largely on the energy 402 

of radiation. Since the source of radiation is almost always polychromatic in lab-based systems (Cnudde 403 

& Boone, 2013), combined with an energy-dependent detector sensitivity, a measure needs to be 404 

calculated for a certain setup. A possibility is to calculate this based on the effective energy (Bam et al., 405 

2020), which is a weighted average of an actual polychromatic beam for a specific voltage and setup 406 

(see Table 1). This was successfully applied in recent studies (Gibson et al., 2021; Warlo et al., 2021). 407 

Although this assumption may be correct when considering the X-ray beam before entering the sample, 408 

this X-ray beam is still a polychromatic beam that will be altered in terms of effective energy depending 409 

on material composition and sample thickness. As also issued in Bam et al. 2020, this will affect the 410 

expected discrimination between the minerals (see Fig. 12). To counter this issue, the effect of material 411 

properties and sample thickness and the full polychromatic beam was here taken into account to 412 

calculate µrec for each mineral (Fig. 2b). The µrec was calculated here on the assumption that a 413 

monomineralic sample with a thickness of 2 cm (according to the used sample diameter in this study) 414 

was scanned. Note that although these values proofed to serve as a perfect guidance for phase 415 

segmentation, images are still prone to several systematic errors (e.g., noise, discretization effects, 416 

imaging artifacts; Cnudde & Boone, 2013). Machine learning tools like Weka 3D segmentation 417 

(Arganda-Carreras et al., 2017) are capable of dealing with some of these errors to improve the accuracy 418 

of the segmented phases. By training a range of image features (e.g., edge detectors and texture filters) 419 
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it becomes possible to distinguish different phases from each other that may contain overlapping 420 

greyscale values (Fig. 13). Extending mineral phase segmentation to more advanced machine learning 421 

techniques (see e.g., Furat et al., 2019; Evsevleev et al., 2020) could provide even better results, but 422 

would require a more elaborate period of segmentation training. 423 

The resulting segmented data can be quantified in 3D through a variation of data analysis methods 424 

(Guntoro et al., 2019a) to open up a new depth of information in describing textures of minerals. This 425 

allows for the 3D interpretation of both the individual phases and of the interrelationships between the 426 

different phases. In terms of ore geology, textural elements like size, shape, and orientation of mineral 427 

grains are referred to as structural textures, while the spatial relation between mineral phases is referred 428 

to as stationary texture (Lobos et al., 2016). The presented methodology covers both the quantitative 429 

extraction of structural textures (i.e., coefficient of variation as a measure of orientation; Fig. 11) and 430 

stationary textures (i.e., correlation matrix; Fig. 10) with a low computational expense. The employed 431 

script only required to open the segmented dataset 4 times at the same time: ( ± 7GB). Since this feature 432 

extraction does not take into account individual grains/minerals for its calculations, this could be 433 

immediately be applied to single/grouped greyscale values instead of more elaborately trained 434 

segmented datasets. The extraction of these features in such a manner opens possibilities to quantify 435 

datasets of whole core sections and/or of selected segments within these cores (e.g., vein orientation 436 

and correlation of mineral phases with ore minerals). As an example, one Nb-Ta-U oxide and multiple 437 

zircon grains were found to be associated with a stellate aggregate of muscovite that is strongly 438 

intergrown with a grouped occurrence of apatite (see Fig. 6b). It is this spatial association that caused 439 

the positive correlation between schorl/apatite and the dense mineral phase (Fig. 10). 440 

 441 

CONCLUSIONS 442 

In this work, we applied a comprehensive methodology for the characterization of the mineralogy of a 443 

Sn-Nb-Ta mineralization in 3D. First, a mineral library of all minerals present is derived from SEM-based 444 

AM analyses for the calculation of µlin. The deduced µrec serve as a most correct guidance to differentiate 445 

between different minerals for a given experimental µCT setup. For example, this allowed us to 446 

differentiate biotite from a Fe-Li mica due to the attribution of the low atomic element lithium. The 447 

trainable Weka 3D segmentation within the open-software Fiji environment allowed for data preparation 448 

and the differentiation between five separate phases (albite, quartz, muscovite, schorl/apatite & dense 449 
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mineral phase). Quantitative information on the orientation of individual mineral phases and their spatial 450 

correlation in 3D was provided by the calculation of statistical descriptors at a low computational 451 

expense. Combining µCT and an SEM-based AM system within a comprehensive methodology can aid 452 

in the mineralogical investigation of ore deposit, both in aspects of visualization and quantification at the 453 

microscopic scale. 454 
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 641 

Table captions 642 

Table 1 Experimental setup of the µCT scans. 643 

Figure captions 644 

Fig. 1 Overview of the different steps that were undertaken for the segmentation of the different mineral 645 

phases. 646 

Fig. 2 Calculated attenuation coefficients of all minerals possibly present. (a) Linear attenuation 647 

coefficients (µlin) of the studied mineral assemblages as a function of X-ray energy. (b) Reconstructed 648 

attenuation coefficients (µrec) as calculated for the given experimental setup and sample size. The 649 

FFAST database maintained by the National Institute of Standards and Technology (NIST) (Chantler et 650 

al., 2005), and available online at physics.nist.gov/PhysRefData/FFast/html/form.html, allows to 651 

calculate µlin as a function of energy. Density values for the different mineral phases are derived from 652 
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the calculated densities in the handbook of mineralogy (John, n.d.) and is available online at 653 

handbookofmineralogy.org. 654 

Fig. 3 Procedure of post-processing the segmented µCT data. (a) Original µCT slice where lighter gray 655 

values correspond with higher µrec values. (b) Data preparation by automatic thresholding and binary 656 

morphological operations. (c) Mineral phase segmentation using Weka 3D segmentation. (d) 657 

Segmented dataset after post-processing. (e-g) Detailed excerpt (see Fig. 3c) of how intermediate 658 

mineral phases are removed from the segmented dataset. (f) Removed datapoints of where an 659 

intermediate phase coincides with the area overlapped by both the low density phase and high density 660 

phase after a single dilation (morphological operation). (g) Final segmented image where misclassified 661 

intermediate phases (see e.g., removed rim of intermediate phase around high density phase) are 662 

excluded for further feature extraction. 663 

Fig. 4 Virtual sample (X:Y:Z = 9×9×9) containing a segmented phase A (9×2×2). The coefficient of 664 

variation is 0 for phase A when measured along the X-axis (as the values of A remain constant, i.e., Y:Z 665 

= 2×2), while the coefficient of variation is 1.87 for phase A when measured along the Y- or Z-axis (i.e., 666 

the measured values are here either 0 or 9×2). 667 

Fig. 5 Outline for the visualization of oriented statistical measures. (a) Orientation of resliced data by 668 

using two angular measurements. (b) Data plot of 3D statistical measures (in the image of stereonets 669 

for the representation of 3D structural geological analysis). 670 

Fig. 6 Mineral distribution map of sample A (acquired with TIMA-X) with the corresponding µCT slice. 671 

(a) BSE image. (b) Mineral distribution map. (c) Calculated µrec values for the identified (color coded) 672 

minerals in the mineral distribution map. (d) Corresponding µCT slice.  673 

Fig. 7 Comparison of the measured and simulated EDX spectra of (a) muscovite and (b) minerals that 674 

classify as Fe-Li mica (zinnwaldite) following the AM system. 675 

Fig. 8 (a) A µCT slice of sample B with some of the most important identified mineral phases indicated. 676 

Note that the greyscale values are adjusted to the range of values present within this slice (see Fig. 6c 677 

for relative position of µrec for each indicated mineral). (b) 3D visualization of the elongated assemblage 678 

of albite, quartz, muscovite, and schorl in Fig.8a and where the different phases are indicated according 679 

to their colors used in Fig. 6 (grid size = 5 mm). 680 

Fig. 9 Volume rendering of the different segmented phases within sample A (grid size = 5 mm). 681 

Fig. 10 Correlation matrix of the different segmented phases within sample A (see Fig. 9). 682 
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Fig. 11 Coefficient of variation for each segmented phase of sample A (see Fig. 9). Note that each 683 

segmented mineral phase displays a different range of values. 684 

Fig. 12 Extreme example of the influence of material composition and sample thickness on the relative 685 

position of µrec for three minerals that were encountered during SEM-EDX analyses. 686 

Fig. 13 Distribution of greyscale values for each segmented phase in sample A. The eroded data points 687 

coincide with local maxima at the intersection between two segmented phases. 688 
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Table 1 690 

Voltage 120 kV 
Power 10 W 
Projections 2400 
Filter Al 1 mm 
Exposure time 1000 ms 
Spatial resolution 18 µm 
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Figure 3 698 
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