Advanced search
1 file | 468.41 KB Add to list

The optimal Malliavin-type remainder for Beurling generalized integers

Frederik Broucke (UGent) , Gregory Debruyne (UGent) and Jasson Vindas Diaz (UGent)
Author
Organization
Project
Abstract
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given α∈(0,1] and c>0 (with c≤1 if α=1 ), a generalized number system is constructed with Riemann prime counting function Π(x)=Li(x)+O(xexp(−clogαx)+log2x), and whose integer counting function satisfies the extremal oscillation estimate N(x)=ρx+Ω±(xexp(−c′(logxlog2x)αα+1) for any c′>(c(α+1))1α+1 , where ρ>0 is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
Keywords
Analytic number theory, Prime number theorem, Saddle-point method, Random prime approximation, Malliavin-type error terms, Generalized integers with large oscillation, Generalized primes, PRIMES

Downloads

  • Optimal-Malliavin-remainder(16-6-22).pdf
    • full text (Accepted manuscript)
    • |
    • open access
    • |
    • PDF
    • |
    • 468.41 KB

Citation

Please use this url to cite or link to this publication:

MLA
Broucke, Frederik, et al. “The Optimal Malliavin-Type Remainder for Beurling Generalized Integers.” JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, vol. 23, no. 1, 2024, pp. 249–78, doi:10.1017/s147474802200038x.
APA
Broucke, F., Debruyne, G., & Vindas Diaz, J. (2024). The optimal Malliavin-type remainder for Beurling generalized integers. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 23(1), 249–278. https://doi.org/10.1017/s147474802200038x
Chicago author-date
Broucke, Frederik, Gregory Debruyne, and Jasson Vindas Diaz. 2024. “The Optimal Malliavin-Type Remainder for Beurling Generalized Integers.” JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU 23 (1): 249–78. https://doi.org/10.1017/s147474802200038x.
Chicago author-date (all authors)
Broucke, Frederik, Gregory Debruyne, and Jasson Vindas Diaz. 2024. “The Optimal Malliavin-Type Remainder for Beurling Generalized Integers.” JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU 23 (1): 249–278. doi:10.1017/s147474802200038x.
Vancouver
1.
Broucke F, Debruyne G, Vindas Diaz J. The optimal Malliavin-type remainder for Beurling generalized integers. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU. 2024;23(1):249–78.
IEEE
[1]
F. Broucke, G. Debruyne, and J. Vindas Diaz, “The optimal Malliavin-type remainder for Beurling generalized integers,” JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, vol. 23, no. 1, pp. 249–278, 2024.
@article{01GQ75S357PBJYTM5Q4FPWP5X3,
  abstract     = {{We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given  α∈(0,1] and  c>0 (with  c≤1 if  α=1 ), a generalized number system is constructed with Riemann prime counting function Π(x)=Li(x)+O(xexp(−clogαx)+log2x), and whose integer counting function satisfies the extremal oscillation estimate  N(x)=ρx+Ω±(xexp(−c′(logxlog2x)αα+1) for any  c′>(c(α+1))1α+1 , where  ρ>0
is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].}},
  author       = {{Broucke, Frederik and Debruyne, Gregory and Vindas Diaz, Jasson}},
  issn         = {{1474-7480}},
  journal      = {{JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU}},
  keywords     = {{Analytic number theory,Prime number theorem,Saddle-point method,Random prime approximation,Malliavin-type error terms,Generalized integers with large oscillation,Generalized primes,PRIMES}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{249--278}},
  title        = {{The optimal Malliavin-type remainder for Beurling generalized integers}},
  url          = {{http://doi.org/10.1017/s147474802200038x}},
  volume       = {{23}},
  year         = {{2024}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: