
Alp Darendelilera*, Dieter Claeysa,b, and El-Houssaine Aghezzafa,b

aDepartment of Industrial Systems Engineering and Product Design, Ghent University,

Ghent, Belgium; bIndustrial Systems Engineering (ISyE), Flanders Make, Kortrijk,

Belgium

 *corresponding author: Alp Darendeliler; alp.darendeliler@ugent.be

Dieter Claeys (ORCID ID): https://orcid.org/0000-0002-7666-2479

El-Houssaine Aghezzaf (ORCID ID): https://orcid.org/0000-0003-3849-2218

mailto:alp.darendeliler@ugent.be
https://orcid.org/0000-0003-3849-2218

1

Integrated condition-based maintenance and multi-item lot-sizing with

stochastic demand

Abstract: This paper studies the problem of integrated lot-sizing and maintenance

decision making in case of multiple products and stochastic demand. The problem

is formulated as a Markov Decision Process (MDP), in which the goal is to find a

joint production and maintenance policy that minimizes the long run expected total

discounted cost. Therefore, the classic Q-learning algorithm is adopted, and a

decomposition-based approximate Q-value heuristic is developed to obtain near-

optimal solutions in a reasonable time. To accelerate the convergence of the Q-

learning algorithm, a hybrid Q-learning method is proposed in which the Q-values

are initiated by the output of the decomposition-based approximate Q-value

heuristic. The numerical experiments reveal that the approximate Q-value heuristic

is outperformed by the classic and hybrid Q-learning algorithms in terms of

accuracy and that the hybrid Q-learning method converges much faster than the

classic Q-learning method. However, these so-called tabular methods do not scale

to larger problems with more than four products. Hence, based on the problem

structure, three state aggregation schemes are developed and applied to the Q-

learning algorithm to solve the large-scale problems. The numerical study

demonstrates that Q-learning with the third state aggregation scheme performs

nearly as good as the hybrid Q-learning method while significantly reducing the

computational time and being scalable to large-scale problems.

Keywords: Condition-based maintenance; Markov decision process; inventory;

multi-product; lot sizing; stochastic demand; reinforcement learning

1. Introduction

In many manufacturing systems, preventive maintenance is proactively performed in

order to reduce the likelihood of unplanned breakdowns, increase production uptime. In

particular, Condition-based maintenance (CBM) recommends performing maintenance

based on the real-time information collected through condition monitoring. If a CBM

program is properly established and effectively implemented, it can significantly reduce

maintenance costs by reducing the number of unnecessary scheduled preventive

2

maintenance operations (Jardine et al., 2006).

In developing a preventive maintenance policy, the stock levels of the products

should be taken into account in addition to the equipment condition to avoid unmet

demand when the system is under maintenance. In addition, production decisions

influence the degradation behaviour of manufacturing systems. Thus, equipment

condition also needs to be considered when planning production. Otherwise, breakdowns

may interrupt the production, leading thus to production losses. To address this

interdependency, in the literature, joint production lot-sizing and CBM policies have been

proposed with the aim of minimizing total production and maintenance costs. Most of

these studies assume that a single product type is produced, and that the demand is

deterministic, which is usually not the case in practice. Hence, a static policy that

optimizes the lot-size and maintenance threshold is developed. Nevertheless, due to the

trend of shifting from mass production to mass customization, machines have to produce

multiple products instead of only one. In such systems, dynamic policies are required to

be responsive to the stochasticity of the degradation and the product demands.

This study considers a single-machine, multiple products, periodic-review

production/inventory system with stochastic demand, implementing CBM. The machine

stochastically degrades with usage, and the degradation behaviour differs depending on

the item being produced. Based on the system state, consisting of the product inventories

and degradation level, the production and maintenance decisions are dynamically made.

The problem is formulated as an MDP, in which upon observing the system state at the

beginning of each period, if the system is operational, it is decided whether to produce a

particular product, perform preventive maintenance, or keep the machine idle. When the

equipment has failed at an observation epoch, corrective maintenance is performed.

3

To solve the underlying MDP, the Q-learning algorithm is adopted. Q-learning

estimates the state-action values via simulated samples instead of using complete

transition probabilities. Hence, it can solve relatively large problems that cannot be solved

by dynamic programming methods. Moreover, an approximate Q-value heuristic is

proposed to quickly obtain a suboptimal solution. To speed up the learning process, the

state-action values in the Q-learning algorithm are initialized by those obtained by the

approximate Q-value heuristic method. However, the tabular Q-learning and the heuristic

method are also subject to the curse of dimensionality due to state space explosion. In the

numerical experiments (Section 5), the dynamic programming methods become

intractable for problems with more than two products, while the Q-learning and the

heuristic methods can solve three and four-product problems, but not more than four

products. To be able to solve larger problems in a reasonable time, three state aggregation

schemes are proposed that exploit the problem structure and apply Q-learning on the

aggregated state space. In Section 5, it is observed that one of the proposed Q-learning

with state aggregation methods is accurate while still being tractable for more than four

products.

The remainder of the paper is organised as follows. Section 2 provides the related

literature. Then, in Section 3, the problem is formulated as a Markov decision process

(MDP). Section 4 describes the methods to solve the MDP. The performance of these

methods is evaluated in Section 5, and conclusions and directions for future work are

mentioned in Section 6.

2. Literature review

The integration of production lot-sizing and maintenance has been extensively studied by

many researchers. Ben-Daya and Makhdoum (1998) study the effect of various

preventive maintenance policies on the joint optimization of EPQ and the economic

4

design of the control chart. Ben-Daya (2002) and El-Ferik (2008) propose models to

determine optimal EPQ and age-based maintenance policies for production systems under

imperfect preventive maintenance. Liao and Sheu (2011) develop an EPQ model that

considers perfect and imperfect preventive maintenance. The probability that a preventive

maintenance operation is perfect depends on the number of imperfect maintenance

operations carried out since the last renewal cycle. Aghezzaf et al. (2007) and Shamsaei

and Van Vyve (2017) propose models for the integrated multi-item production and

maintenance planning problem. However, the above studies employ traditional time-

based maintenance (TBM) approaches; thus, they do not take the equipment degradation

status into account in determining production and maintenance policies.

In recent years, CBM is incorporated into the EPQ problem. Jafari and Makis

(2015) propose a model for the joint optimization of EPQ and preventive maintenance

policy, where the deterioration of the system is described by a proportional hazards model

to consider the age and condition monitoring (CM) information. Zheng et al. (2021)

extend the work of Jafari and Makis (2015) by considering a CBM policy with multiple

maintenance actions and dynamic control limits in their model. Peng and van Houtum

(2016) develop a model to optimize EPQ and CBM policy, where the degradation follows

continuous time and continuous state stochastic process. Khatab et al. (2018) investigate

the integration of production quality and CBM and propose a model to determine the

optimal inspection cycle and degradation threshold, which initiates preventive

maintenance. Cheng et al. (2018) address an integrated problem of production lot-sizing,

quality control and CBM. In all these models, it is assumed that a single product is

produced, and the demand rate is constant.

For the single-product systems with random demand, Markov decision process

(MDP) models have been developed to optimize the joint production and CBM policies

5

(Iravani and Duenyas, 2002; Sloan, 2004; Xiang et al., 2014; Jafari and Makis, 2019). In

these studies, the degradation is modelled as a Markov chain with limited number of

states.

Table 1. Summary of literature on the integration of lot-sizing and maintenance

Authors Maintenance

strategy

Single or multiple items Demand

Aghezzaf et al. (2007) TBM Multiple Deterministic and dynamic

Ben-Daya (2002) TBM Single Deterministic and constant

Ben-Daya and Makhdoum (1998) TBM Single Deterministic and constant

Cheng et al. (2018) CBM Single Deterministic and constant

El-Ferik (2008) TBM Single Deterministic and constant

Iravani and Duenyas (2002) CBM Single Stochastic and stationary

Jafari and Makis (2015) CBM Single Deterministic and constant

Jafari and Makis (2019) CBM Single Stochastic and stationary

Khatab et al. (2019) CBM Single Deterministic and constant

Liao and Sheu (2011) TBM Single Deterministic and constant

Peng and van Houtum (2016) CBM Single Deterministic and constant

Shamsaei and Van Vyve (2017) TBM Multiple Deterministic and dynamic

Sloan (2004) CBM Single Stochastic and stationary

Xiang (2014) CBM Single Stochastic and stationary

Zheng et al. (2021) CBM Single Deterministic and constant

Proposed model CBM Multiple Stochastic and stationary

The literature on the joint optimization of production lot-sizing and maintenance,

summarized in Table 1, suggests that multiple products have only been considered in a

non-CBM maintenance setting with deterministic demand, and in particular that the

integration of CBM and lot sizing in a stochastic demand setting has been considered only

for single-product systems. Hence, to the best of our knowledge, the integrated lot-sizing

and CBM decision making has not been studied for multi-item production systems with

6

stochastic demand. This paper aims at developing an integrated production and

maintenance model that fills this gap.

The common methodology to deal with the stochastic demand is to model the

problem as an MDP which is solved to optimality by classical dynamic programming

methods as in single-product models with tractable state spaces (Iravani and Duenyas,

2002; Sloan, 2004). In this paper, the problem is extended to multiple products and

formulated as an MDP, but the main challenge is solving the MDP due to the exponential

increase of the state space (and thus computational time and space) in the number of

products. Hence, reinforcement learning (also called approximate dynamic

programming) techniques are adopted to tackle this challenge.

Scheduling the production of multiple products on a single machine under

stochastic demand over an infinite horizon–but without considering maintenance decision

making–is in literature categorized as the stochastic economic lot-scheduling problem

(SELSP) (Sox et al. 1999). Winands et al. (2011) classify the SELSPs based on their

sequencing and the lot-sizing decisions. The proposed model’s production policy could

be classified under the category of global lot-sizing (lot-sizing decisions depend not only

on the stock level of the current product being produced but also on the complete system

state) and dynamic production sequencing (decisions are made based on current state

rather than in a fixed order) within the framework of the SELSP literature. However, the

SELSP literature does not consider deterioration of the underlying systems and

maintenance activities, while this paper considers them.

There are few studies in the literature that consider SELSP under the category of

global lot-sizing and dynamic production sequence. Qiu and Loulou (1995) propose a

semi-Markov decision process model (SMDP) and obtain near-optimal policies by the

successive approximation algorithm for two-product problems. They mention that their

7

procedure is not efficient and accurate for larger problem instances due to the curse of

dimensionality. Furthermore, Li et al. (2023) investigate the joint multi-item capacitated

line balancing and lot-sizing problem with random demand. The problem is formulated

as a risk-averse two stage stochastic programming model.

The main reason for the application of reinforcement learning or approximate

dynamic programming to the SELSP is tackling the curse of dimensionality problem.

Wang et al. (2012) propose two reinforcement learning algorithms to solve SELSP with

random demand and processing times. Since the proposed algorithms are tabular, they

could solve only limited-sized problems. Löhndorf and Minner (2013) formulate the

SELSP as a SMDP. To deal with the curse of dimensionality, they propose two linear

approximate value functions and apply approximate value iteration to find the weights of

them. For small problems, the approximate value iteration performs better than globally

optimized simple base-stock and fixed-cycle policies, but as the problem size increases,

it is significantly outperformed. This study proposes dynamic sequencing, lot-sizing and

maintenance policies based on the degradation state and the inventory levels. Hence,

unlike in the SELSP, the sequencing and lot-sizing decisions are influenced by the

equipment degradation. Moreover, the numeric experiments reveal that Q-learning with

the proposed state aggregation scheme provides well-performing policies while being

scalable to large-scale problems.

Deep reinforcement learning (DRL) is also recently applied to complex

maintenance and production/inventory control problems. Huang et al. (2020) propose a

DRL approach to find a preventive maintenance policy for a complex serial production

line with intermediate buffers. Gijsbrechts et al. (2021) apply Asynchronous Actor Critic

(A3C) DRL algorithm to the lost sales, dual sourcing and multi-echelon inventory

problems. They conclude that the performance of A3C can match the performance of the

8

state-of-the-art heuristics and other approximate dynamic programming methods.

Vanvuchelen et al. (2020) utilize proximal policy optimization algorithm to the joint

replenishment problem. The algorithm approaches the optimal policy for small-scale

problems and gives comparable results with the well-known heuristic. Oroojlooyjadid et

al. (2021) propose a DRL algorithm for the beer game and obtain near optimal policies.

In the above studies, the DRL algorithms give plausible results. However, a challenge in

DRL algorithms is the significant time and effort required for hyperparameter tuning

(Boute, Gijsbrechts, Jaarsveld and Vanvuchelen, 2021). On the contrary, the proposed

Q-learning method with state aggregation (QLA) is practical to implement and does not

require significant effort to tune the hyperparameters. The numerical study shows that it

converges to a well-performing policy in a reasonable computational time.

9

Nomenclature

QL Q-learning

IQL hybrid Q-learning

QLA1 Q-learning with the first state aggregation scheme

QLA2 Q-learning with the second state aggregation scheme

QLA3 Q-learning with the third state aggregation scheme

AVC average cost per period

𝑀 set of products

𝑋𝑛 degradation level at the beginning of period 𝑛

𝐼𝑛
𝑚 inventory level of product 𝑚 at the beginning of period 𝑛

𝐼𝑚𝑎𝑥
𝑚 maximum allowed stock level of product 𝑚

𝑞𝑚 planned lot-size of product 𝑚

𝐶 time length of a period

𝜌𝑚 production rate of product 𝑚

𝑠𝑛 system state at the beginning of period 𝑛

�̅�𝑛 aggregated state at the beginning of period 𝑛

𝐷𝑛
𝑚 random variable denoting the demand of product 𝑚 in period 𝑛

𝑑𝑛
𝑚 sampled demand of product 𝑚 in period 𝑛

𝜆𝑚 mean demand of product 𝑚

𝐹 failure state

𝑃𝑖𝑗(𝑚) one-step transition probability of degradation from state 𝑖 to 𝑗 when

producing item 𝑚

𝑷(𝒎) probability transition matrix under the production of item 𝑚

𝑇𝐹(𝑚)(𝑖) first passage time to 𝐹 from state 𝑖 for product 𝑚

𝑐𝑠
𝑚 setup cost for product 𝑚

𝑐𝑚 unit production cost of product 𝑚

𝑐ℎ
𝑚 inventory holding cost of product 𝑚

𝑐𝑙
𝑚 lost sales cost of product 𝑚

𝑐𝑐 corrective maintenance cost

𝑐𝑝 preventive maintenance cost

𝑌𝑛
𝑚 binary variable that equals 1 if and only if product 𝑚 is produced in period 𝑛

𝐶(𝑠, 𝑎) one-period cost in state 𝑠 under action 𝑎

𝑉(𝑠) value of being in state 𝑠

𝑄(𝑠, 𝑎) state action value

𝜇 production and maintenance policy

𝛾 discount factor

𝑢 index of the most urgent product

𝑟𝑢′
 the second most urgent product’s runout time

𝐽𝑖(𝑠) state aggregation function of the 𝑖𝑡ℎ aggregation scheme

�̅�(𝑠) estimated steady state probability of being in state 𝑠

𝑑𝑜𝑝𝑡 percentage error with respect to the optimal policy

𝑑𝑟 percentage of the relative difference of the value functions

10

3. Problem formulation

Consider a manufacturing system producing multiple items to meet the uncertain demand.

All items are produced by a single machine, which deteriorates while it is producing. The

time axis is divided in periods, and at the beginning of each period, inventory levels of

the products and the degradation level of the equipment are observed. The observed state

at the start of period 𝑛 is denoted by 𝑠𝑛 = (𝑋𝑛, 𝐼𝑛
1, … , 𝐼𝑛

|𝑀|
), where 𝑋𝑛 designates the

degradation level, 𝐼𝑛
𝑚 the inventory level of product 𝑚, and 𝑀 the set of products. Based

on the observed state, a decision is made to take one of the following actions during the

period: (1) stay idle; (2) perform corrective maintenance (only an option and the only

option if a failure occurred in the previous period); (3) perform preventive maintenance;

(4) produce a particular product 𝑚 in a certain quantity 𝑞𝑚. In each period, only one

product type can be produced; if maintenance is to be performed, then production cannot

take place in that period. It is assumed that the equipment becomes “as good as new” after

preventive or corrective maintenance. The equipment is used at full capacity within a

period in which production occurs. This means that the equipment produces 𝑞𝑚 = 𝐶𝜌𝑚

units of product 𝑚 during a period, with 𝐶 the period length and 𝜌𝑚 the production rate

of item 𝑚 (units per unit time).

A fixed production setup cost 𝑐𝑠
𝑚 is incurred when item 𝑚 is produced in a period,

and a cost of 𝑐𝑚 occurs per unit of item 𝑚 produced. Hence, when 𝑞𝑛
𝑚 products 𝑚 are

produced in period 𝑛, the total production cost is 𝑐𝑠
𝑚 + 𝑞𝑛

𝑚𝑐𝑚. If a failure occurs during

production in a period, then a production cost is incurred for the produced items up to the

failure. If a failure occurs after 𝑘 units of product 𝑚 have been produced, then the total

production cost is 𝑐𝑠
𝑚 + 𝑘𝑐𝑚. An inventory holding cost 𝑐ℎ

𝑚 is charged per item 𝑚 in the

stock at the end of a period, that is after the product demand is realized. The items

produced in a period can already be used to satisfy the demand in that period. If the

11

demand cannot be satisfied in a period, then lost sales cost 𝑐𝑙
𝑚 is incurred per unit of

shortage. Inventory levels of the products are always equal to or greater than zero since

backlogging is not allowed. In addition, they must be less than or equal to the maximum

allowed inventory level 𝐼𝑚𝑎𝑥
𝑚 , where 𝑚 ∈ 𝑀. As a consequence, producing product 𝑚 in

period 𝑛 is only an allowed action if 𝐼𝑛
𝑚 + 𝑞𝑚 ≤ 𝐼𝑚𝑎𝑥

𝑚 . The preventive maintenance cost

is denoted by 𝑐𝑝 and the cost for corrective maintenance by 𝑐𝑐. The preventive

maintenance cost is assumed to be much less than the corrective maintenance cost. The

demand for product 𝑚 during period 𝑛 is denoted by the random variable 𝐷𝑛
𝑚. It is

assumed that the demand for a product during consecutive periods forms a sequence of

independent and identically distributed random variables. The demand distributions of

the products are also independent of each other. The problem is modelled as an infinite-

horizon MDP with a discount factor 𝛾. The objective is to minimize the total expected

discounted costs over the long run.

The evolution of the degradation is modelled as a discrete-time stochastic process.

If product 𝑚 is produced within a period, then the 𝑘𝑡ℎ epoch corresponds to the planned

completion epoch of the 𝑘𝑡ℎ unit of item 𝑚. As a result, the time in between two

production epochs within the same period equals 1/𝜌𝑚 if no failure occurs in between of

those epochs. The degradation level of the equipment at epoch 𝑘 is denoted by 𝑍𝑘. Within

a period 𝑛, the process {𝑍𝑘, 𝑘 = 0,1, … }, behaves as an absorbing Markov chain with

𝑍𝑜 = 𝑋𝑛 and with state space {𝑋𝑛, 𝑋𝑛 + 1, … , 𝐹}, where 𝐹 denotes the absorbing (failure)

state. The transition probabilities of degradation level transitioning to state 𝑗 at the next

epoch if the degradation level is equal to 𝑖 at the current epoch are denoted by 𝑃𝑖𝑗(𝑚):

𝑃𝑖𝑗(𝑚) = 𝑃{𝑍𝑘+1 = 𝑗|𝑍𝑘 = 𝑖, 𝑌𝑛
𝑚 = 1} 𝑓𝑜𝑟 𝑖 ≤ 𝑗 ≤ 𝐹, 𝑚 = 1, … , |𝑀|, (1)

12

with 𝑌𝑛
𝑚 being a binary decision variable that equals 1 if and only if product 𝑚 is

produced during period 𝑛. As degradation can only increase during production, 𝑃𝑖𝑗(𝑚) =

0 if 𝑗 < 𝑖. 𝐏(𝐦) denotes the matrix of one-step transition probabilities 𝑃𝑖𝑗(𝑚) when

producing product 𝑚. The 𝑘-step transition probability of the Markov chain under the

production of item 𝑚 transitioning from state 𝑖 to 𝑗 corresponds to the probability that the

degradation is at level 𝑗 right after the production of the 𝑘𝑡ℎ item within the same period.

It is given by

𝑃𝑖𝑗(𝑚)𝑘 = 𝑃{𝑍𝑘 = 𝑗|𝑍0 = 𝑖, 𝑌𝑛
𝑚 = 1} 𝑓𝑜𝑟 𝑖 ≤ 𝑗 ≤ 𝐹, 𝑚 = 1, … , |𝑀|. (2)

Since 𝐹 is the absorbing state of the Markov chain,

𝑃𝐹𝐹(𝑚)𝑘 = 𝑃{𝑍𝑘 = 𝐹|𝑍0 = 𝐹, 𝑌𝑛
𝑚 = 1} = 1 ∀ 𝑘 ∈ {1,2, … }, 𝑚 = 1, … , |𝑀|. (3)

𝑃𝑖𝑗(𝑚)𝑘 is equal to the entry at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the 𝑘 − 𝑠𝑡𝑒𝑝 transition

probability matrix 𝐏(𝐦)𝐤 for product 𝑚. If product 𝑚 is chosen to be produced in period

𝑛, and the degradation level at the beginning of the period is 𝑖, then 𝑃𝑖𝑗(𝑚)𝑞𝑚
 is the

probability that state 𝑗 ≤ 𝐹 will be observed at the end of the production run, and thus at

the beginning of the next period. If a preventive maintenance is carried out in a period,

then the next period’s degradation level is 1, that is the “as good as new” state.

It is assumed that failures occur at the epochs when the production of a unit of an

item has just completed. If a failure occurs right after the production of the 𝑘𝑡ℎ unit,

production is stopped at epoch 𝑘, and the degradation level of the next state is 𝐹. The first

passage time 𝑇𝐹(𝑚)(𝑖) from state 𝑖 to the failure state 𝐹 for product 𝑚, if no preventive

maintenance would be carried out has the phase-type distribution 𝑃ℎ(𝑒𝑖,𝑻(𝒎)), that is

𝑃{𝑇𝐹(𝑚)(𝑖) = 𝑘} = 𝑒𝑖. 𝑻(𝒎)𝒌−𝟏. 𝒕(𝒎), (4)

13

𝑃{𝑇𝐹(𝑚)(𝑖) ≤ 𝑘} = 1 − 𝑒𝑖. 𝑻(𝒎)𝑘. 𝟏, (5)

where 𝑻(𝒎) is the probability transition matrix of the transient states of the one-step

probability transition matrix 𝑷(𝒎) for product 𝑚 (first 𝐹 rows and columns of 𝑷(𝒎)) ,

𝒕(𝒎) is the column vector showing the probabilities from each state 𝑖 < 𝐹 to the failure

state 𝐹 (first 𝐹 rows of the last column of 𝑷) and 𝑒𝑖 is the 𝑖𝑡ℎ unit vector.

At the beginning of a period 𝑛, the system is in state 𝑠𝑛 = (𝑋𝑛, 𝐼𝑛
1, … , 𝐼𝑛

|𝑀|
). Given

the degradation level 𝑋𝑛 and the inventory levels 𝐼𝑛
1, … , 𝐼𝑛

|𝑀|
, the next period’s state

𝑠𝑛+1 and the one period cost 𝐶(𝑠𝑛, 𝑎), depend on the selected action 𝑎, the realized

product demands 𝑑𝑛
1 , … , 𝑑𝑛

|𝑀|
, and the evolution of the degradation if a product is being

produced. This behaviour is formalized in the following system equations:

1. If 𝑋𝑛 = 𝑖 < 𝐹 and action 𝑎 corresponds to the preventive maintenance decision, or

𝑋𝑛 = 𝐹 (corrective maintenance is only option), then

𝑠𝑛+1 = (𝑋𝑛+1 = 1, 𝐼𝑛+1
1 = (𝐼𝑛

1 − 𝑑𝑛
1)+, … , 𝐼𝑛+1

|𝑀|
= (𝐼𝑛

|𝑀|
− 𝑑𝑛

|𝑀|
)

+
),

𝐶(𝑠𝑛, 𝑎) = ∑ 𝑐ℎ
𝑢(𝐼𝑛

𝑢 − 𝑑𝑛
𝑢)+

|𝑀|

𝑢=1
+ ∑ 𝑐𝑙

𝑢(𝑑𝑛
𝑢 − 𝐼𝑛

𝑢)+
|𝑀|

𝑢=1
+ {

𝑐𝑝 𝑖𝑓 𝑋𝑛 < 𝐹

𝑐𝑐 𝑖𝑓 𝑋𝑛 = 𝐹
.

2. If 𝑋𝑛 = 𝑖 < 𝐹 and action 𝑎 corresponds to the “𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒” decision, then

𝑠𝑛+1 = (𝑋𝑛+1 = 𝑖, 𝐼𝑛+1
1 = (𝐼𝑛

1 − 𝑑𝑛
1)+, … , 𝐼𝑛+1

|𝑀|
= (𝐼𝑛

|𝑀|
− 𝑑𝑛

|𝑀|
)

+
),

𝐶(𝑠𝑛, 𝑎) = ∑ 𝑐ℎ
𝑢(𝐼𝑛

𝑢 − 𝑑𝑛
𝑢)+

|𝑀|

𝑢=1
+ ∑ 𝑐𝑙

𝑢(𝑑𝑛
𝑢 − 𝐼𝑛

𝑢)+.
|𝑀|

𝑢=1

3. If 𝑋𝑛 = 𝑖 < 𝐹 and action 𝑎 corresponds to the production of item 𝑚 with 𝑞𝑚 =

𝐶𝜌𝑚 (producing item 𝑚 is only a valid option when 𝑞𝑚 = 𝐶𝜌𝑚 ≤ 𝐼𝑚𝑎𝑥
𝑚 − 𝐼𝑛

𝑚),

then

14

𝑠𝑛+1 = (𝑗, 𝐼𝑛+1
1 = (𝐼𝑛

1 − 𝑑𝑛
1)+, … , 𝐼𝑛+1

𝑚 = (𝐼𝑛
𝑚 + 𝑘 − 𝑑𝑛

𝑚)+, … ,𝐼𝑛+1
|𝑀|

= (𝐼𝑛
|𝑀|

− 𝑑𝑛
|𝑀|

)
+

),

𝐶(𝑠𝑛, 𝑎) = ∑ 𝑐ℎ
𝑢(𝐼𝑛

𝑢 − 𝑑𝑛
𝑢)+

𝑢∈𝑀∖{𝑚}

+ ∑ 𝑐𝑙
𝑢(𝑑𝑛

𝑢 − 𝐼𝑛
𝑢)+

𝑢∈𝑀∖{𝑚}

+ 𝑐𝑠
𝑚

+𝑐𝑚𝑘 + 𝑐ℎ
𝑚(𝐼𝑛

𝑚 + 𝑘 − 𝑑𝑛
𝑚)+ + 𝑐𝑙

𝑚(𝑑𝑛
𝑚 − 𝐼𝑛

𝑚 − 𝑘)+,

where 𝑘 = 𝑇𝐹(𝑚)(𝑖) 𝑤ℎ𝑒𝑛 𝑗 = 𝐹, and 𝑘 = 𝑞𝑚 when 𝑗 < 𝐹.

The goal is to find an optimal policy 𝜇 that maps each state 𝑠 ∈ 𝑆 to action 𝜇(𝑠) ∈

𝐴(𝑠) to minimize the total expected discounted costs over the long run:

𝑉∗(𝑠) = min
𝜇

𝐸𝜇 [∑ 𝛾𝑛

∞

𝑛=0

𝐶(𝑠𝑛, 𝜇(𝑠𝑛))], (6)

where 𝑠 = 𝑠0 is the initial state, 0 < 𝛾 < 1 is the discount factor, and 𝑉∗(𝑠) denotes the

optimal value function of state 𝑠. The optimal policy can be found by solving the well-

known Bellman optimality equations:

𝑉∗(𝑠) = min
𝑎∈𝐴(𝑠)

{𝐸𝐶(𝑠, 𝑎) + 𝛾𝐸[𝑉∗(𝑠′)|𝑠, 𝑎]} ∀𝑠 ∈ 𝑆,
(7)

where 𝐸𝐶(𝑠, 𝑎) is the expected one-period cost of taking action 𝑎 in state 𝑠. For the set

of Bellman equations given in (7), there exists a unique optimal solution 𝑉∗(𝑠), for all

states 𝑠 ∈ 𝑆 (The detailed version of (7) for the present problem is given in Appendix D).

Given the optimal value functions, any policy that minimizes the right-hand side of the

(7) for all 𝑠 ∈ 𝑆, is an optimal policy for the MDP. The dynamic programming methods

exactly solve (7) by using the Bellman equation as an updating rule.

4. Solution methods

Dynamic programming (DP) methods such as value iteration or policy iteration can be

used to solve MDPs with finite state and action spaces. However, due to the curse of

dimensionality, they might require an exponential amount of computational time/space

15

for large and even for moderate-size problem instances. The present problem has a state

space size of 𝐹 ∏ (𝐼𝑚𝑎𝑥
𝑘 + 1)|𝑀|

𝑘=1 for |𝑀| products which increases exponentially in the

number of products. DP methods involve frequent expected updating of the value

functions in all states. Hence, for more than two products, the problem becomes quickly

computationally intractable using DP methods. Therefore, in this section, three alternative

techniques are proposed which will allow to find approximate solutions within a

reasonable time for problems with more than two products. In Section 5, the performance

of these techniques will be evaluated.

4.1. The decomposition-based approximate Q-value heuristic

The main idea of the heuristic method is to decompose the n-product problem into 𝑛

single-product problems which are computationally tractable. The decomposition

approach is explained in Bertsekas (2019) and illustrated on the example of the restless

multiarmed bandit problem. In the present problem, the optimal state-action values (Q-

values) are approximated by combinations of the optimal state-action values of the single-

product problems, called subproblems.

The approximate Q-value of the main problem is denoted by �̅�(𝑠, 𝑎) for state 𝑠 =

(𝑋 = 𝑖, 𝐼1, … , 𝐼|𝑀|) and action 𝑎 ∈ 𝐴 = {𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 1, … ,

𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 |𝑀| , 𝑑𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒,

𝑑𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒}. In the subproblem 𝑚, only item 𝑚 is taken into account

and other products are ignored. The optimal Q-values 𝑄𝑚(𝑠𝑚, 𝑎𝑚) and optimal value

functions 𝑉𝑚(𝑠𝑚) for each subproblem 𝑚 ∈ 𝑀, can be computed by the value-iteration

algorithm where 𝑠𝑚 = (𝑋 = 𝑖, 𝐼𝑚) and 𝑎𝑚 ∈ 𝐴𝑚 = {𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚,

𝑑𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒, 𝑑𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒}. For the subproblems,

the detailed Bellman optimality equation is given in Appendix E.

16

The main problem’s approximate Q-values are expressed as follows:

1. If action 𝑎 = "𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒" is taken, then

�̅�(𝑖, 𝐼1, … , 𝐼|𝑀|, 𝑎) = ∑ 𝑄𝑘(𝑖, 𝐼𝑘, 𝑎𝑘)

|𝑀|

𝑘=1

,

(8)

where 𝑎𝑘 = "𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒", ∀ 𝑘 ∈ 𝑀.

2. If action 𝑎 = "𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑚" is taken, then,

�̅�(𝑖, 𝐼1, … , 𝐼|𝑀|, 𝑎) = ∑ 𝑄𝑘(𝑖, 𝐼𝑘, 𝑎𝑘)

𝑘∈𝑀∖{𝑚}

+ 𝑄𝑚(𝑖, 𝐼𝑚, 𝑎𝑚)

 (9)

where 𝑎𝑚 = "𝑝𝑟𝑜𝑑𝑢𝑐𝑒" and 𝑎𝑘 = "𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒", ∀ 𝑘 ∈ 𝑀 ∖ {𝑚}.

3. If 𝑋 = 𝑖 < 𝐹 and action 𝑎 = "𝑑𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒" is taken, or 𝑖 = 𝐹

(𝑎 = "𝑑𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒" is the only valid option), then

�̅�(𝑖, 𝐼1, … , 𝐼|𝑀|, 𝑎) = {
𝑐𝑝 𝑖𝑓 𝑖 < 𝐹

𝑐𝑐 𝑖𝑓 𝑖 = 𝐹
+ ∑ 𝑄𝑘(1, 𝐼𝑘, 𝑎𝑘)

|𝑀|

𝑘=1

(10)

where 𝑎𝑘 = "𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒", ∀ 𝑘 ∈ 𝑀.

The resulting suboptimal policy is defined by �̅�(𝑠) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎∈𝐴(𝑠)

�̅�(𝑠, 𝑎) ∀𝑠 ∈ 𝑆.

4.2. Tabular Q-learning

Q-learning is one of the most widely used reinforcement learning methods and is shown

in pseudo-code in Figure 1. Instead of updating value functions, Q-learning updates state-

action values (Q-values) giving the value of taking an action 𝑎 in a state 𝑠 and from then

on following the best policy learned so far. Thus, the algorithm iteratively solves the

Bellman optimality equation

𝑄∗(𝑠, 𝑎) = 𝐸𝐶(𝑠, 𝑎) + 𝛾𝐸 [min
𝑎′∈𝐴(𝑠′)

𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎] ∀𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴(𝑠),

17

where 𝑄∗(𝑠, 𝑎) is the optimal state-action value. Instead of performing expected updates

as in the DP methods, Q-learning estimates the optimal Q-values by the sampled values.

In the first step of the Q-learning algorithm, the Q-values are initialized. As these

are unknown, the common approach is adopted which sets them to zero (Powell, 2011,

Chapter 15). To speed up the learning process, the Q-learning algorithm is studied in case

the output of the heuristic method is used to initiate the Q-values. It will be examined

whether this approach leads to a good approximation in fewer iterations and whether the

additional time to first run the heuristic algorithm pays off. In the sequel, the Q-learning

method where the Q-values are initiated to 0 is denoted as “QL”, and where the Q-values

are initiated by the heuristic is denoted as “IQL”. The detailed pseudocodes of the QL

and the IQL are shown in Figure A1 and Figure A2 (Appendix A). It is proved that Q-

learning converges to the optimal Q-values if each state-action pair is visited infinitely

often and the step size satisfies certain conditions (Bertsekas and Tsitsiklis, 1996, Chapter

5). However, the convergence is slow when the discount factor is close to 1 (Evan-Dar

and Mansour, 2003) as in the present case. Therefore, in the numerical examples, it will

be examined whether IQL can expedite the convergence.

In the second step, an action 𝑎 ∈ 𝐴(𝑠) is chosen for state 𝑠 = (𝑋, 𝐼1, … , 𝐼|𝑀|) in a

way that balances exploitation (choosing what appears to be the best action with current

experience) and exploration (learning more about effects of other actions). Then, the

algorithm samples a realization of the degradation path based on the state 𝑠 and the action

chosen 𝑎; and the stationary product demands 𝑑1,…,𝑑|𝑀|. Using these values, the

evolution of the one-period cost 𝐶(𝑠, 𝑎) and the next state 𝑠′ are governed by the system

equations given in section 3; thus, no expected update is required as in the DP methods.

Based on this current and past experience, the Q-value is updated. Hence, state-action

pairs are updated when they are visited. The visited Q-value 𝑄(𝑠, 𝑎) at time 𝑡 is updated

18

based on the temporal difference between the target value (𝐶(𝑠, 𝑎) + 𝛾 min
𝑎′∈𝐴(𝑠′)

𝑄(𝑠′, 𝑎′))

minus old Q-value 𝑄(𝑠, 𝑎) , and 𝛼 is the learning rate. The algorithm runs for 𝑇 iterations

which is a sufficiently large number.

1. Initialize a starting state 𝑠, and 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠)

2. For 𝑡 = 1, 2, … , 𝑇

 2.1. Choose action 𝑎 ∈ 𝐴(𝑠) for state s (𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦)

 2.2. Sample the cost 𝐶(𝑠, 𝑎) and the next state 𝑠′ based on the current

state 𝑠 and action 𝑎

 2.3. Update the Q-values by the equation:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝐶(𝑠, 𝑎) + 𝛾 min
𝑎′∈𝐴(𝑠′)

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

 2.4. Update 𝑠 ← 𝑠′

3. Return 𝜇(𝑠) = 𝑎𝑟𝑔 min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

 Figure 1. Steps of the Q-learning algorithm

4.3. Q-learning with state aggregation

The tabular Q-learning and the heuristic method store the Q-value of each state-action

pair in memory. Therefore, as the state space grows exponentially with the number of

products, they become inapplicable in case of a large number of products. To deal with

this issue, a Q-learning algorithm with state aggregation is developed, and three

aggregation schemes are proposed to reduce the state space. In essence, only Q-values for

aggregate state-action pairs are computed and stored, and the disaggregated states are

used in the transition process and the calculation of the one-period costs.

The results of the numerical experiment in Section 5 will show that the inventory

level of the product with the lowest expected runout time (i.e. the expected duration until

the inventory of an item falls to zero (Gascon et al., 1994)), has the biggest impact on the

optimal Q-values among all items, that is, if the decision is to produce a product, that

‘most urgent’ product will be produced. Therefore, in the state aggregation methods, the

19

index and inventory level of the most urgent product having the lowest expected runout

time, is stored in the aggregated states while the other products’ inventories are not kept

as separate variables. If multiple products would have the same minimum expected runout

time, then the item with the highest expected lost sales cost, in case of stock out, is

selected as most urgent; if there would still be a tie, then one of these urgent products is

randomly selected.

In the first aggregation scheme, the degradation level, the index and inventory

level of the most urgent product, 𝑢 = arg min
𝑚∈𝑀

(𝐼𝑚/𝜆𝑚), are stored; where 𝜆𝑚 is the mean

demand for product 𝑚 during a period. For a complete state 𝑠 = (𝑋, 𝐼1, … , 𝐼|𝑀|), the

corresponding aggregated state is given by 𝐽1(𝑠) = (𝑋, 𝑢, 𝐼𝑢), where 𝐽1(𝑠) is the first

aggregation function that maps the complete state 𝑠 to the aggregated state (𝑋, 𝑢, 𝐼𝑢).

To consider the impact of the products’ inventories other than the most urgent on

the Q-values, and thus the underlying policy, two alternative state aggregation methods

are proposed. In the second state aggregation scheme, the second most urgent product’s

runout time, 𝑟𝑢′
= [min

𝑚∈𝑀∖{𝑢}
𝐼𝑚/𝜆𝑚], is stored in addition to 𝑢 and 𝐼𝑢 (𝑟𝑢′

is rounded to

the nearest integer so as to be used as a discrete state). For a complete state 𝑠, the second

aggregation function is given by 𝐽2(𝑠) = (𝑋, 𝑢, 𝐼𝑢, 𝑟𝑢′
). The third aggregation approach

stores the total inventory level in addition to 𝑢 and 𝐼𝑢. Hence, in making production and

maintenance decisions, the overall stock of the system is considered. Corresponding to

the system state 𝑠, the aggregate state is given by 𝐽3(𝑠) = (𝑋, 𝑢, 𝐼𝑢, ∑ 𝐼𝑚|𝑀|
𝑚=1), where

𝐽3(𝑠) is the third aggregation function.

At the beginning of a period 𝑛, after observing the aggregated state �̅�𝑛, one of the

following actions is chosen: (1) keep the machine idle; (2) perform corrective

maintenance (if and only if 𝑋𝑛 = 𝐹); (3) perform preventive maintenance; (4) produce

20

the urgent product 𝑢𝑛. Based on the system state 𝑠𝑛, the sampled demand values

𝑑𝑛
1 , … , 𝑑𝑛

|𝑀|
, and the selected action 𝑎, the one-period cost 𝐶(𝑠𝑛, 𝑎) and the next state 𝑠𝑛+1

are determined by the system equations (Section 3). The steps of the Q-learning for the

aggregation schemes 𝑖 = 1, 2, 3 are shown in Figure 2. Note that �̅�𝑡 is the aggregated state

associated with the complete system state 𝑠𝑡 at iteration 𝑡.

The tabular representation of the state-action values has exponential worst-case

state complexity 𝑂(𝐹|𝑀|𝐼𝑚𝑎𝑥
|𝑀|

) while the first, second and third aggregation schemes have

pseudo-polynomial complexities of 𝑂(𝐹|𝑀|𝐼𝑚𝑎𝑥), 𝑂(𝐹|𝑀|𝐼𝑚𝑎𝑥
2), and 𝑂(𝐹|𝑀|2𝐼𝑚𝑎𝑥

2)

respectively, where 𝐼𝑚𝑎𝑥 = max
𝑘∈𝑀

𝐼𝑚𝑎𝑥
𝑘 .

1. Choose aggregation scheme 𝑖 ∈ {1,2,3}. Initialize

𝑠1 = (𝑋1, 𝐼1
1, … , 𝐼1

|𝑀|
)

�̅�1 = 𝐽𝑖(𝑠1)
𝑄(�̅�, 𝑎) = 0 for all �̅� ∈ 𝑆̅𝑖and 𝑎 ∈ 𝐴(�̅�)

2. For 𝑡 = 1, 2, … , 𝑇
2.1. Choose action 𝑎𝑡 ∈ 𝐴(�̅�𝑡) for state �̅�𝑡 (𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦)

2.2. Sample 𝑑1, … , 𝑑|𝑀| and 𝑋𝑡+1,
 Compute 𝐶(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1 by the system equations

2.3. Update the next state
�̅�𝑡+1 ← 𝐽𝑖(𝑠𝑡+1)

2.4. Update the Q-value by the equation:

𝑄(�̅�𝑡, 𝑎𝑡) ← 𝑄(�̅�𝑡, 𝑎𝑡) + 𝛼 (𝐶(𝑠𝑡, 𝑎𝑡) + 𝛾min
𝑎′∈𝐴(�̅�𝑡+1)

𝑄(�̅�𝑡+1, 𝑎′) − 𝑄(�̅�𝑡, 𝑎𝑡))

3. Return 𝜇(�̅�) = 𝑎𝑟𝑔 min
𝑎∈𝐴(�̅�)

𝑄(�̅�, 𝑎) ∀ �̅� ∈ 𝑆̅𝑖

Figure 2. Steps of Q-learning with state aggregation

5. Numerical study

This section presents computational experiments on the performance of the proposed

methods. Subsection 5.1 shows the performance evaluation of the tabular methods (the

heuristic method (the decomposition-based Q-value heuristic), QL and IQL) on two, three

and four-product examples. In Subsection 5.2, the Q-learning with state aggregation

(QLA) methods are compared to the IQL, for the problem settings that are tractable to the

21

IQL, and the numeric result of a 10-product example is presented.

In all examples, machine degradation follows a Gamma process with shape and

scale parameters 𝛼 and 𝛽, and with the failure threshold 𝐿. By the method proposed by

De Jonge (2019), the Gamma process is approximated by a discrete-time Markov chain

having 21 states. The resulting one-step transition probability matrices can be found in

the Supplementary Material of this article. A discount factor 𝛾 = 0.9 is used in the

calculations. The cost parameters used in the experiments do not come from real cases.

However, inspired by Wang et al. (2012) and Löhndrorf and Minner (2013), numerical

experiments are carried out, and thus a wide set of scenarios are tested.

For the Q-learning algorithms (QL, IQL and QLA), a harmonic learning rate 𝛼 =

𝑏0𝑏 (𝑏 + 𝑁𝑡(𝑠, 𝑎) − 1)⁄ , is used with 𝑏 > 0, 0 < 𝑏0 ≤ 1 and 𝑁𝑡(𝑠, 𝑎) denoting the

number of times a certain state-action pair (𝑠, 𝑎) has been visited up to the time 𝑡 (George

and Powell, 2006). The parameters of the learning rate (𝑏0, 𝑏) are tuned separately for

each method based on the guidelines for choosing step size formulas proposed by Powell

(2011, Chapter 11).

5.1. Performance evaluation of the tabular methods

This part starts with the performance evaluations of the IQL, QL and heuristic method

over 32 problem instances with two products which are generated by a 25 full factorial

design. The problem instances are still computationally tractable, implying that the

optimal policy can be found by the dynamic programming methods. As a result, the

accuracy of the approximate policies obtained from Q-learning and the heuristic method

can be evaluated by comparing them to the optimal policy. Since the Q-learning

algorithms update the Q-values in each iteration and thus potentially update the policy,

the author also examine how fast the Q-learning algorithms evolve to a near-optimal

policy. In the problem instances with two products, the evolution of the percentage

22

difference of the value functions between a proposed policy and the optimal policy is

examined. This percentage difference 𝑑𝑜𝑝𝑡, as proposed by Powell (2011, Chapter 15), is

defined as

𝑑𝑜𝑝𝑡 = 100 ∑ �̅�(𝑠) |�̅�(𝑠) − 𝑉(𝑠)| 𝑉(𝑠)⁄ ,

𝑠∈𝑆

where

• �̅�(𝑠) is the value of being in state 𝑠 under the approximate policy; �̅�(𝑠) is

computed by the policy evaluation algorithm that takes the policy 𝜇(𝑠) =

𝑎𝑟𝑔 min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆, as input. The pseudocode of the algorithm is shown

in Figure A4 in Appendix A.

• 𝑉(𝑠) is the optimal value function that is computed via classic dynamic

programming algorithms such as the value iteration algorithm.

• �̅�(𝑠) is the estimated steady-state probability of being in state 𝑠, computed as:

�̅�(𝑠) = 𝑁𝑡(𝑠)/𝑡.

• In order to evaluate the heuristic algorithm for the two-product problem instances,

𝑑𝑜𝑝𝑡 is also computed, but there are two differences:

o The heuristic algorithm approximates Q-values as a sum of Q-values of

the corresponding one-product cases. Hence, the method is not iterative,

thus 𝑑𝑜𝑝𝑡 only has to be calculated once.

o The steady-state probabilities �̅�(𝑠) under the heuristic policy are estimated

via simulation (in the examples, the system is simulated for 10,000,000

iterations while the heuristic policy is being executed).

23

For the examples with more than two products (Section 5.2), the exact dynamic

programming methods are not computationally tractable any more. Hence, different

methods are needed to evaluate the performance of the Q-learning and heuristic

algorithms in these cases. Two methods are employed. The first computes 𝑑𝑟 every 𝐾

iterations, which is similar to computing 𝑑𝑜𝑝𝑡 except that 𝑉(𝑠) is unknown and therefore

replaced by the estimated value functions for the states up to the 𝐾 iterations ago:

𝑑𝑟 = 100 ∑ �̅�(𝑠) |𝑉𝑢(𝑠) − 𝑉(𝑢−1)(𝑠)| 𝑉(𝑢−1)(𝑠)⁄ ,

𝑠∈𝑆

where 𝑉(𝑢−1)(𝑠) and 𝑉𝑢(𝑠) are the estimated value functions for state 𝑠 ∈ 𝑆 after

respectively (𝑢 − 1)𝐾 and 𝑢𝐾 iterations, and �̅�(𝑠) = 𝑁𝑢𝐾(𝑠)/𝑢𝐾 denotes the estimated

steady-state probability at iteration 𝑢𝐾 of being in state 𝑠. In other words, 𝑑𝑟 is a measure

for the relative change in the value function during the last 𝐾 iterations.

The second method calculates the average cost per period (AVC). Although the

goal is to minimize the values, and not the AVC, a policy that aims at small value

functions is likely to entail small AVC. The main advantage to consider AVC is

computational: it can easily be calculated online (no need to go over all states) via the

following update formula:

𝐴𝑉𝐶 ← (𝐴𝑉𝐶 (𝑡 − 1) + 𝐶(𝑠, 𝑎))/𝑡

Another advantage of AVC is that it enables to compare the performance of the

policies generated from the proposed methods even in the case where the optimal policy

and value function are not known. The pseudocodes of QL and IQL shown in Figure A1

and Figure A2 (Appendix A) also include this update rule (step 2.4), and the formula to

compute 𝑑𝑟 (step 2.5). Note that AVC is updated each iteration, while 𝑑𝑟 is updated every

𝐾 iterations (𝐾 is chosen as 100,000 in the two and three-product examples and 1,000,000

24

in the four-product example). The AVC calculation steps for the heuristic method are

shown in Figure A3 (Appendix A).

For IQL and QL, an epsilon-greedy exploration policy is used with decreasing

exploration probability; for a visited state 𝑠 at time 𝑡, a random action is selected with

probability 𝜖𝑡(𝑠) = 1 (𝑁𝑡(𝑠) + 1)⁄ to explore, and the greedy action 𝑎∗ =

argmin
𝑎∈𝐴

𝑄(𝑠, 𝑎) is chosen with probability (1 − 𝜖𝑡(𝑠)) and 𝑁𝑡(𝑠) is the number of times

state 𝑠 is visited up to the time 𝑡. The step size parameters for IQL and QL are given in

Appendix F.

5.1.1. Two-product examples

In this part, the policies obtained from the IQL, QL and the heuristic methods are

compared with the optimal policy. Tractable instances of two-product problems are

solved by the proposed methods and the value-iteration algorithm that gives the exact

optimal value functions. The accuracy of the policies obtained from the IQL, QL and the

heuristic methods are compared based on 𝑑𝑜𝑝𝑡.

A 25 full factorial design is constructed for which the preventive maintenance

cost, the inventory holding costs and the lost sales costs are chosen as the two-level factors

(Table 2). The corresponding factor values for 32 problem instances are given in

Appendix B. The Gamma distributed machine degradation has shape and scale

parameters 𝛼 = 0.5 and 𝛽 = 1 with the failure threshold 𝐿 = 10. The corrective

maintenance cost is 𝑐𝑐 = $800 and the period length is 𝐶 = 4 hours. For each product,

the production amount per period, maximum allowed stock level, demand distribution,

setup cost and unit production cost are given in Table 3.

IQL and QL run for 10,000,000 iterations after a warm-up period of 2,000,000

25

iterations. In the warm-up period, a constant epsilon 𝜖 = 0.1, is used for the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦

exploration to encourage exploration actions in the initial phase. In addition, due to

frequent exploration, the actual initial performance is not yet representative and therefore

the authors only start computing 𝑑𝑟 and 𝑑𝑜𝑝𝑡, and updating AVC after the warmup period.

Table 2. 2-level factors for the experimental design

Level 𝑐𝑝($) 𝑐ℎ
1($) 𝑐ℎ

2($) 𝑐𝑙
1($) 𝑐𝑙

2($)

1 300 1 1 100 90

2 400 3 3 200 180

Table 3. Data for the experimental design

Product 𝑞𝑘(units/period) 𝐼𝑚𝑎𝑥
𝑘

(units)
𝐷𝑘 𝑐𝑠

𝑘 ($) 𝑐𝑘 ($/unit)

1 4 12 Unif [0,2] 50 1

2 8 20 Unif [0,4] 50 1

The results of the experiments are presented in Appendix C, where the 𝑑𝑜𝑝𝑡, 𝑑𝑟

and AVC values are presented for every one million iterations for IQL and QL, and where

the AVC value is given for the heuristic method, as well as for the optimal policy obtained

policy from value iteration. Similar results are observed in all problem instances. The

following results can be observed:

• Both QL and IQL lead to very accurate solutions (which is in agreement with the

theoretical results on convergence from literature; Bertsekas and Tsitsiklis, 1996;

Evan-Dar and Mansour, 2003).

• The heuristic method is reasonably accurate, but is – in terms of accuracy -

outperformed by IQL and QL.

• IQL is much more efficient, that is, it reaches an accurate solution much faster.

• Small and stable values for 𝑑𝑟 seem to be an indicator for having found a good

policy.

26

• Stable average cost (AVC) values can also indicate that a good policy has been

found.

• AVC as a criterion is able to identify the best method in terms of accuracy.

Consequently, it is used to compare the performance of the proposed methods in

three-product and four-product examples which suffer from the curse of

dimensionality.

𝑰𝟏
 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 P2 P2 P2
4 P1 P1 P1 I I I I I
5 P1 P1 I I I I I I
6 P1 P1 I I I I I I
7 P1 P1 I I I I I I
8 P1 P1 I I I I I I
9 P1 P1 I I I I I I
10 P1 P1 I I I I I I
11 P1 P1 I I I I I I
≥12 P1 P1 I I I I I I

𝟏 ≤ 𝑿 ≤ 𝟖

𝑰𝟏
 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 I I I
4 P1 P1 P1 I I I I I
5 P1 P1 I I I I I I
6 P1 P1 I I I I I I
7 P1 P1 I I I I I I
8 P1 P1 I I I I I I
9 P1 P1 I I I I I I
10 P1 P1 I I I I I I
11 P1 P1 I I I I I I
≥12 P1 P1 I I I I I I

𝟗 ≤ 𝑿 ≤ 𝟏𝟎

𝑰𝟏

 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 I I I
4 P1 P1 P1 I I I I I
5 P1 P1 P1 I I I I I
6 P1 P1 I I I I I I
7 P1 P1 I I I I I I
8 P1 P1 I I I I I I
9 P1 P1 I I I I I I
10 P1 P1 I I I I I I
11 P1 P1 I I I I I I
≥12 P1 P1 I I I I I I

𝟏𝟏 ≤ 𝑿 ≤ 𝟏𝟑

𝑰𝟏

 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 M P2 P2 P2 P2
3 P1 P1 P2 M P2 I I I
4 P1 P1 P1 M I I I I
5 P1 P1 P1 I I I I I
6 P1 P1 I I I I I I
7 P1 P1 I I I I I I
8 P1 P1 I I I I I I
9 P1 P1 I I I I I I
10 P1 P1 I I I I I I
11 P1 P1 I I I I I I
≥12 P1 P1 I I I I I I

𝑿 = 𝟏𝟒

𝑰𝟏

 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2 P2
2 P1 P1 M M P2 P2 P2 P2
3 P1 P1 M M P2 I I I
4 P1 P1 M M M I I I
5 P1 P1 M M M I I I
6 P1 P1 M M I I I I
7 P1 P1 M I I I I I
8 P1 P1 I I I I I I
9 P1 P1 I I I I I I
10 P1 P1 I I I I I I
11 P1 P1 I I I I I I
≥12 P1 P1 I I I I I I

𝑿 = 𝟏𝟓

𝑰𝟏
 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2 P2
1 P1 M M M M P2 P2 P2
2 P1 M M M M M M M
3 P1 M M M M M M M
4 P1 M M M M M M M
5 P1 M M M M I I I
6 P1 M M M I I I I
7 P1 M M I I I I I
8 P1 M M I I I I I
9 P1 M M I I I I I
10 P1 M M I I I I I
11 P1 M M I I I I I
≥12 P1 M M I I I I I

𝑿 = 𝟏𝟔

27

𝑰𝟏

 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 M M M M M M M M
1 M M M M M M M M
2 M M M M M M M M
3 M M M M M M M M
4 M M M M M M M M
5 M M M M M I I I
6 M M M M I I I I
7 M M M I I I I I
8 P1 M M I I I I I
9 P1 M M I I I I I
10 P1 M M I I I I I
11 P1 M M I I I I I
≥12 P1 M M I I I I I

𝑿 = 𝟏𝟕

𝑰𝟏
 0 1 2 3 4 5 6 ≥7

𝑰𝟐

0 M M M M M M M M
1 M M M M M M M M
2 M M M M M M M M
3 M M M M M M M M
4 M M M M M M M M
5 M M M M M I I I
6 M M M M I I I I
7 M M M I I I I I
8 M M M I I I I I
9 M M M I I I I I
10 M M M I I I I I
11 M M M I I I I I
≥12 M M M I I I I I

𝟏𝟖 ≤ 𝑿 ≤ 𝟐𝟎

Figure 3. Optimal policy for case 9

Before moving on to the three- and four-product examples, it is worth examining

the structure of the optimal policy and the policies resulting from the proposed methods.

Several of these insights have been used in developing the state aggregation schemes in

Section 4.3. Figure 3 shows the optimal action for each state for Case 9. The following

structural properties can be observed from the optimal policy:

• If it is not optimal to produce an item with stock level 𝑦, then given the same

degradation and the stock level of the other product, it is also not optimal to

produce that product when its stock level is 𝑦′ ≥ 𝑦.

• If it is optimal to produce an item with stock level 𝑦, then given the same

degradation and the stock level of the other product, it is also optimal to produce

that product when its stock level is 𝑦′ ≤ 𝑦.

• If the optimal action is to perform preventive maintenance for a state with

degradation level 𝑖, then given the same stock levels, it is also optimal to conduct

preventive maintenance for degradation level 𝐹 > 𝑖′ ≥ 𝑖.

• If the optimal action is to produce item 𝑗 ∈ {1,2}, then either item 𝑗 has the earliest

runout time 𝑚𝑖𝑛 {𝐼1 𝜆1,⁄ 𝐼2 𝜆2⁄ }, where 𝜆𝑘 is the mean demand for item 𝑘 = 1,2;

P1: prod. item 1, P2: prod. item 2, M: prv. maintenance, I: idle

28

if 𝐼1 𝜆1⁄ = 𝐼2 𝜆2⁄ the item with the highest expected lost sales cost

𝑚𝑎𝑥 {𝑐𝑙
1𝜆1, 𝑐𝑙

2𝜆2}, in case of stock out, is produced.

• It is not sufficient to only consider the inventory level of the most urgent product

to select the optimal decision. For example, under the first aggregation method,

the states (𝑋 = 14, 𝐼1 ∈ {2, … , 𝐼𝑚𝑎𝑥
1 } , 𝐼2 = 3) correspond to the same aggregated

state, (𝑋 = 14, 𝑢 = 2, 𝐼𝑢 = 3), where 𝑢 is the index of the most urgent product;

however, the optimal decision differs depending on the inventory level of the first

item.

 Note that the above properties are observed in all problem instances.

Figure 4 shows the policy resulting from the heuristic method. When the

degradation level is 𝑋 ≤ 10, the heuristic method does not initiate production in some

states (e.g., (𝑋 ≤ 10, 𝐼1 = 2, 𝐼2 = 4)) for which the optimal policy prescribes to produce.

Also, in some states (in particular those where the degradation levels 12 ≤ 𝑋 ≤ 15), the

heuristic method dictates to conduct preventive maintenance while it is optimal to

produce. The main reason for the heuristic method’s relatively poor performance is the

lost sales resulting from the inaccuracy in the approximation of the state-action values.

The heuristic method computes the Q-values as a summation of the corresponding Q-

values of the single-product problems that ignore the stock levels of the other products.

When both products are reasonably but not very urgent to produce, the heuristic will

decide to postpone production, which may later lead to a situation where both products

are very urgent to produce, leading to lost sales for the product that has to wait until the

other product has been produced. Extending this reasoning to more than two products, it

is hypothesized that the heuristic method performs worse for more products. This will be

confirmed in Subsection 5.1.2.

29

Figure 5 shows the policy obtained from the IQL method. The structure of IQL’s

policy resembles the optimal policy as expected. The difference with the optimal policy

is mainly that the IQL rarely visits and updates the Q-values of the states that have very

little impact on the optimal policy. Note that the states that are not visited by the underling

policies are not shown in Figure 4 and Figure 5.

𝑰𝟏
 0 1 2 3 4 5

𝑰𝟐

0 P1 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 P2
4 P1 P1 I I I I
5 P1 P1 I I I I
6 P1 P1 I I I I
7 P1 P1 I I I I
8 P1 P1 I I I I
9 P1 P1 I I I I
10 P1 P1 I I I I
𝟏𝟏 P1 P1 I I I I

𝟏 ≤ 𝑿 ≤ 𝟖

𝑰𝟏
 0 1 2 3 4 5

𝑰𝟐

0 P1 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2
3 P1 P1 I I I I
4 P1 P1 I I I I
5 P1 P1 I I I I
6 P1 P1 I I I I
7 P1 P1 I I I I
8 P1 P1 I I I I
9 P1 P1 I I I I
10 P1 P1 I I I I
11 P1 P1 I I I I

𝟗 ≤ 𝑿 ≤ 𝟏𝟎

𝑰𝟏
 0 1 2 3 4 5

𝑰𝟐

0 P1 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2
3 P1 P1 M P2 P2 I
4 P1 P1 M I I I
5 P1 P1 I I I I
6 P1 P1 I I I I
7 P1 P1 I I I I
8 P1 P1 I I I I
9 P1 P1 I I I I
10 P1 P1 I I I I
11 P1 P1 I I I I

𝑿 = 𝟏𝟏

𝑰𝟏

 0 1 2 3 4 5

𝑰𝟐

0 P1 P2 P2 P2 P2 P2
1 P1 M M P2 P2 P2
2 P1 M M M M P2
3 P1 M M M M M
4 P1 M M M M M
5 P1 M M M M M
6 P1 M M M M M
7 P1 M M M M M
8 P1 P1 M M M M
9 P1 P1 M M M M
10 P1 P1 M M M M
11 P1 P1 M M M M

𝑿 = 𝟏𝟐

𝑰𝟏
 0 1 2 3 4 5

𝑰𝟐

0 M M M P2 P2 P2
1 M M M M M M
2 M M M M M M
3 P1 M M M M M
4 P1 M M M M M
5 P1 M M M M M
6 P1 M M M M M
7 P1 M M M M M
8 P1 M M M M M
9 P1 M M M M M
10 P1 M M M M M
11 P1 M M M M M

𝑿 = 𝟏𝟑

𝑰𝟏
 0 1 2 3 4 5

𝑰𝟐

0 M M M M M M
1 M M M M M M
2 M M M M M M
3 M M M M M M
4 M M M M M M
5 M M M M M M
6 M M M M M M
7 M M M M M M
8 M M M M M M
9 M M M M M M
10 M M M M M M
11 M M M M M M

𝑿 = 𝟏𝟒

30

𝑰𝟏
 0 1 2 3 4 5

𝑰𝟐

0 M M M M M M
1 M M M M M M
2 M M M M M M
3 M M M M M M
4 M M M M M M
5 M M M M M M
6 M M M M M M
7 M M M M M M
8 M M M M M M
9 M M M M M M
10 M M M M M M
11 M M M M M M

𝟏𝟓 ≤ 𝑿 ≤ 𝟐𝟎

Figure 4. Policy resulting from the heuristic method for Case 9

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 P2 P2
4 P1 P1 P1 I I I I
5 P1 P1 I I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝟏 ≤ 𝑿 ≤ 𝟑

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 P2 P2
4 P1 P1 P1 I I I I
5 P1 P1 P1 I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟒

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 I P2
4 P1 P1 P1 I I I I
5 P1 P1 I I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟓

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 I I
4 P1 P1 P1 I I I I
5 P1 P1 I I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝟔 ≤ 𝑿 ≤ 𝟕

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P2 P2 P2 P2 P2 P2 P2
1 P2 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 I I I
4 P1 P1 P1 I I I I
5 P1 P1 P1 I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟖

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 I I I
4 P1 P1 P1 I I I I
5 P1 P1 I I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟗

P1: prod. item 1, P2: prod. item 2,

M: prv. maintenance, I: idle

31

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P2 P1 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 P2 I
4 P1 P1 P1 I I I I
5 P1 P1 P1 I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟏𝟎

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 P2
3 P1 P1 P2 P2 P2 P2 I
4 P1 P1 I I I I I
5 P1 P1 I I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟏𝟏

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P1 P2 P2 P2 P2 P2
2 P1 P2 P2 P2 P2 I P2
3 P1 P1 P2 P2 P2 I I
4 P1 P1 P1 I I I I
5 P1 P1 P1 I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11

P1 P1 I I I I I

𝑿 = 𝟏𝟐

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P1 P2 P2 P2 P2 P2
2 P1 P2 P2 P2 P2 I P2
3 P1 P1 P1 P2 P2 I I
4 P1 P1 P1 I I I I
5 P1 P1 P1 I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟏𝟑

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 P2 P2 P2 P2
2 P1 P1 P2 P2 P2 P2 I
3 P1 P1 P1 P2 I I I
4 P1 P1 P1 M I I I
5 P1 P1 P1 I I I I
6 P1 P1 I I I I I
7 P1 P1 I I I I I
8 P1 P1 I I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟏𝟒

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 P2 P2 P2 P2 P2
1 P1 P2 P2 M P2 P2 P2
2 P1 P1 M P2 M P2 P2
3 P1 M M M M I I
4 M M M M M I I
5 P1 P1 M M I I I
6 P1 P1 M M I I I
7 P1 P1 M I I I I
8 P1 P1 M I I I I
9 P1 P1 I I I I I
10 P1 P1 I I I I I
11 P1 P1 I I I I I

𝑿 = 𝟏𝟓

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P2 M P2 P2 P2 P2 M
1 P2 M M M M P2 M
2 M M M M M M M
3 P1 M M M M M M
4 M M M M M I M
5 P1 M M M I I M
6 P1 M M M I I I
7 P1 M M I I I I
8 P1 M M I I I I
9 P1 M M I I I I
10 P1 M M I I I I
11 P1 M M I I I I

𝑿 = 𝟏𝟔

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 P1 P2 M M M M M
1 M M M M M M M
2 P2 M M M M M M
3 M M M M M M M
4 M M M M M M M
5 M M M M M I M
6 M M M M I I I
7 M M M I I I I
8 M M M I I I I
9 M M M I I I I
10 P1 M M I I I I
11 P1 M M I I I I

𝑿 = 𝟏𝟕

32

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 M M M M M M M
1 M M M M M M M
2 M M M M M M M
3 M M M M M M M
4 M M M M M M M
5 M M M M M I I
6 M M M M I I I
7 M M M I I I I
8 M M M I I I I
9 M M M I I I I
10 M M M I I I I
11 M M M I I I I

𝟏𝟖 ≤ 𝑿 ≤ 𝟏𝟗

𝑰𝟏
 0 1 2 3 4 5 6

𝑰𝟐

0 M M M M M M M
1 M M M M M M M
2 M M M M M M M
3 M M M M M M M
4 M M M M M M M
5 M M M M M I I
6 M M M M I I I
7 M M M M I I I
8 M M M I I I I
9 M M M I I I I
10 M M M I I I I
11 M M M I I I I

𝑿 = 𝟐𝟎

Figure 5. Policy resulting from the IQL method for Case 9

5.1.2. Three and four-product examples

In this section, the results for three and four-product examples are presented. The shape

and scale parameters of the degradation are 𝛼 = 0.5 and 𝛽 = 1, and the failure threshold

is 𝐿 = 10. The period length is 𝐶 = 4 hours. The corrective maintenance cost is 𝑐𝑐 =

$800, preventive maintenance cost is 𝑐𝑐 = $300; and the setup and unit productions costs

are 𝑐𝑠
𝑘 = $50, 𝑐𝑘 = $1, 𝑘 = 1,2, … ,4. For each product, the production amount per

period, maximum allowed stock level, demand distribution, inventory holding and lost

sales costs are given in Table 4 and Table 5 corresponding to the three and four-product

examples respectively.

Table 4. Data for the three-product example

Product 𝑞𝑘(units/period) 𝐼𝑚𝑎𝑥
𝑘

(units)

𝐷𝑘 𝑐ℎ
𝑘($/unit) 𝑐𝑙

𝑘($/unit)

1 4 12 Unif [0,2] 2 200

2 8 20 Unif [0,3] 1 180

3 4 12 Unif [0,2] 2 200

P1: prod. item 1, P2: prod. item 2, M: prv. maintenance, I: idle

33

Figure 6. 𝑑𝑟 values for IQL and QL with respect to the number of iterations for the

three-product problem

The 𝑑𝑟 curves of IQL and QL are given in Figure 6. It is calculated for iterations

𝑛 = 2𝐾, 3𝐾 … , 𝑇, with 𝐾 = 100,000 and 𝑇 = 45,000,000. The 𝑑𝑟 of QL is 0.046% at

the end of the simulation while IQL reaches that value already at iteration 28,000,000. In

Figure 7, the total average cost per period is shown for IQL, QL, and the heuristic method.

The average cost of the heuristic method is $156.20. At the end of the simulation run, the

average costs are $133.29 and $135.35 for IQL and QL respectively. IQL reaches the

average cost $135.33 already at iteration 16,800,000, which is slightly lower than the

value QL converges at the end.

34

Figure 7. Average cost curves of IQL, QL and the heuristic method for the three-

product problem

Table 5. Data for the four-product example

Product 𝑞𝑘(units/period) 𝐼𝑚𝑎𝑥
𝑘

(units)

𝐷𝑘 𝑐ℎ
𝑘($/unit) 𝑐𝑙

𝑘($/unit)

1 8 20 Unif [0,3] 1 180

2 4 10 Unif [0,2] 2 200

3 4 12 Unif [0,2] 2 200

4 8 20 Unif [0,2] 1 160

Figure 8 shows the 𝑑𝑟 values of IQL and QL. It is calculated for iterations 𝑛 =

2𝐾, 3𝐾 … , 𝑇, with 𝐾 = 1,000,000 and 𝑇 = 200,000,000. At the iteration 𝑇, 𝑑𝑟 is

0.634% for QL, whereas IQL reaches 0.620% already at iteration 13,000,000. Thus, the

convergence of the value functions of IQL is again significantly faster than QL. The total

average costs per period versus the number of iterations for IQL, QL, and heuristic

method are depicted in Figure 9. The average cost of the heuristic method is $235.38,

while it is $178.03 and $185.81 for IQL and QL respectively.

35

Figure 8. 𝑑𝑟 values for IQL and QL with respect to the number of iterations for the four-

product problem

As hypothesized in Subsection 5.1.1, the heuristic method’s accuracy decreases

for increasing number of products. The percentage differences between the average costs

of the heuristic method and IQL are equal to 3.71%, 14.67%, 24.36% for the two, three

and four-product problems respectively.

Figure 9. Average cost curves of IQL, QL and the heuristic method for the four-product

problem

36

5.1.3 Final evaluation

From the numerical examples, the authors conclude that initializing Q-values to the

output of the heuristic method significantly speeds up the learning process, especially for

increasing number of products (the state space gets larger). In Table 6, the actual

computational times are given for QL, IQL, and heuristic method. For QL, the times are

given for 𝑇 iterations, while for IQL, times are until it reaches the same accuracy as QL.

These computations have been performed on a computer with four core processors

running at 1.80 GHz and 16 GB memory. From Table 6, it can be concluded that the

heuristic method is very fast and that initializing Q-values to the output of the heuristic

method significantly speeds up the learning process especially for increasing number of

products. In addition, IQL is a robust method since it gives considerably close results to

the optimal solution. Hence, the authors conclude that IQL is the best choice. However,

due to the exploding state space, even IQL (also the QL and the heuristic method) cannot

solve problems with more than four products.

Table 6. Comparison for the computational times of IQL and QL

 Time (in seconds)

Number of

products
IQL QL

Heuristic

method

2 363.80 2,281.6 55.78

3 3688.48 5,800.95 79.02

4 2457.05 35,444.50 153.16

5.2. Performance evaluation of QLA

In this part, the performances of the state aggregation methods are evaluated. The

methods with the first, second, and third aggregation schemes are called QLA1, QLA2,

and QLA3, respectively. For all methods, the algorithmic parameters are given in

Appendix F.

37

5.2.1. Four-product examples

The performances of QLA1, QLA2, and QLA3 are compared against IQL with the eight

four-product instances summarized in Table 7. The resulting policies are evaluated via a

simulation run of 5,000,000 steps. Table 7 presents the percentage differences in the

average costs of the QLA methods (𝐴𝑉𝐶𝑄𝐿𝐴𝑘 , 𝑘 = 1,2,3) and IQL (𝐴𝑉𝐶𝐼𝑄𝐿), i.e.,

𝐺𝑎𝑝(%) = 100 (𝐴𝑉𝐶𝑄𝐿𝐴𝑘 − 𝐴𝑉𝐶𝐼𝑄𝐿) 𝐴𝑉𝐶𝐼𝑄𝐿⁄ for 𝑘 = 1,2,3.

QLA1 performs worst among the proposed methods. Hence, the first aggregation

method, which only contains the inventory level of the most urgent product in the

aggregated state, is not a sufficient approach for capturing the problem structure. The

reason is similar as to why the heuristic method is the worst proposed tabular method. In

all cases, QLA3 outperforms QLA2, thus the authors conclude that the third aggregation

method is the best choice.

Table 7. Instances and the percentage gaps of QLA1, QLA2 and QLA3 with respect to

IQL; the other parameters are set to the values in Table 5

Instance Parameter Gap (%)

 𝑐𝑝 ($) 𝑐𝑙
1($/unit) 𝑐𝑙

2($/unit) 𝑐𝑙
3($/unit) 𝑐𝑙

4($/unit) QLA1 QLA2 QLA3

1 300 100 90 200 160 18.130 3.978 0.063

2 400 100 90 100 80 27.604 2.898 1.292

3 300 200 90 100 160 19.391 3.141 0.768

4 400 200 90 200 80 24.957 3.573 0.341

5 300 100 180 200 80 30.587 5.766 1.208

6 400 100 180 100 160 29.068 5.372 1.449

7 300 200 180 100 80 19.391 3.346 0.945

8 400 200 180 200 160 26.223 4.529 1.290

Figure 10 shows the average cost curves of QLA1, QLA2, QLA3, and IQL for

Case 7. QLA2 and QLA3 converge much faster than IQL. At the end of 15,000,000

iterations, the average costs of QLA2 and QLA3 have already converged while IQL is

still improving. However, QLA3 converged to a better policy than the QLA2. Note that,

38

to achieve convergence, IQL had to be run for 200,000,000 iterations for the four-

product instances.

Figure 10. Average cost curves of QLA1, QLA2, QLA3 and IQL for Case 7

5.2.2. 10-product example

In this part, a 10-product example is considered with 𝑞𝑘 = 10 units, 𝐼𝑚𝑎𝑥
𝑘 = 20 units for

𝑘 = 1,2, … ,10. It is assumed that 𝑐𝑐 = $800, 𝑐𝑝 = $300, and the setup and unit

production costs are 𝑐𝑠
𝑘 = $50, 𝑐𝑘 = $1 for 𝑘 = 1,2, … ,10. The failure threshold is 𝐿 =

10. For each product, the demand distribution, the shape and scale parameters of the

degradation, the lost sales and the holding costs are given in Table 8.

Table 8. Data for the 10-product example

Product 𝐷𝑘 (𝛼, 𝛽) 𝑐𝑙
𝑘 ($) 𝑐ℎ

𝑘 ($)

1 Unif [0,2] 0.5, 1 200 1

2 Unif [0,2] 1, 1 200 3

3 Unif [0,2] 1, 1 200 2

4 Unif [0,2] 0.5, 1 180 1

5 Unif [0,2] 0.5, 1 160 1

6 Unif [0,2] 1, 1 120 3

7 Unif [0,1] 1, 1 200 2

8 Unif [0,1] 0.5, 1 140 1

9 Unif [0,1] 1, 1 130 1

10 Unif [0,1] 1, 1 100 1

39

Figure 11. Average cost curves of QLA1, QLA2 and QLA3 for the 10-product problem

As Figure 11 demonstrates, the average cost of QLA2 and QLA3 have already

converged before the end of the simulation run. However, QLA3 clearly outperforms

QLA2. This confirms that QLA3 is the most accurate state aggregation method.

6. Conclusions

In this study, the integration of lot sizing and condition-based maintenance (CBM) has

been studied in case of multiple products and stochastic demand. The problem has been

formulated as a Markov Decision Process (MDP) in which production and maintenance

decisions are made based on both equipment condition and product inventories. The

tabular Q-learning algorithm has been adopted, and a decomposition-based approximate

Q-value heuristic method has been proposed to solve the problem in a reasonable time.

To speed up the convergence of the Q-learning algorithm, a hybrid (IQL) method has

been proposed where the Q-values are initialized by the state-action values obtained by

the heuristic method. The IQL and QL methods clearly outperform the heuristic method

in terms of accuracy, and IQL converges much faster than QL.

40

However, the proposed tabular methods (the IQL, QL and the heuristic method)

are not scalable to problems with more than four products due to the exponentially

growing state space. Therefore, three state aggregation schemes, called QLA1, QLA2,

and QLA3, have been developed based on the structure of the problem, and Q-learning

has been applied to the aggregated state space. The performance of the state aggregation

schemes has been tested for problems with up to ten products. The numeric results

demonstrate that QLA3 outperforms QLA1 and QLA2. Moreover, QLA3 converges

much faster while developing policies that perform very close to IQL.

The proposed model can be utilized for the joint production, inventory and

maintenance control for single-machine multi-product manufacturing systems under

CBM. The policies obtained from the solution methods and the analysis provided on the

structure of the optimal policy can help the practitioners to reduce the total operating

costs.

In this study, it is assumed that the system is reviewed at fixed epochs and the

time length of the production lots and the maintenance activities are equal. In future

research, this assumption will be relaxed by extending the model to a semi-Markov

decision process framework, which allows to make decisions at non-equidistant epochs

corresponding to the completion of unit production or completion of a maintenance

action. Moreover, imperfect maintenance and its effects on the production and

maintenance decisions as well as on the costs could be investigated. Other extensions

could be to consider the inclusion of production setup times and/or stochastic

maintenance durations.

Disclosure Statement

The authors declare no conflict of interest.

41

Supplementary Material

The supplementary material is uploaded with the paper.

References

Aghezzaf E-H., Jamali M., and Ait-Kadi D. (2007). An integrated production and

preventive maintenance planning model. European Journal of Operational

Research, 181 (2), 679–685.

Ben-Daya M., and Makhdoum M. (1998). Integrated production and quality model under

various preventive maintenance policies. Journal of the Operational Research

Society, 49(8), 840-853.

Ben-Daya M. (2002). The economic production lot-sizing problem with imperfect

production processes and imperfect maintenance. International Journal of

Production Economics, 76 (3), 257–264.

Bertsekas D.P. (2019). Reinforcement Learning and Optimal Control. First Edition.

Athena Scientific.

Bertsekas D.P., and Tsitsiklis J.N. (1996). Neuro-Dynamic Programming. Athena

Scientific, Belmont, MA.

Cheng G.Q., Zhou B.H., and Li L. (2018). Integrated production, quality control and

condition-based maintenance for imperfect production systems. Reliability

Engineering & System Safety, 175, 251–264.

De Jonge B. (2019). Discretizing continuous-time continuous-state deterioration

processes, with an application to condition-based maintenance, Reliability

Engineering & System Safety, 188, 1-5.

42

El-Ferik S. (2008). Economic production lot-sizing for an unreliable machine under

imperfect age-based maintenance policy. European Journal of Operational

Research, 186(1), 150–163.

Even-Dar E., and Mansour Y. (2003). Learning rates for Q-learning. Journal of Machine

Learning Research, 5, 1–25.

Gascon, A., Leachman, R.C. and Lefrancois, P. (1994). Multi-item, single machine

scheduling problem with stochastic demands: a comparison of heuristics.

International Journal of Production Research, 32(3), 583–596.

George P.A., and Powell W.B. (2006). Adaptive stepsizes for recursive estimation with

application in approximate dynamic programming. Machine Learning, 65, 167-

198.

Gijsbrechts J., Boute R. N., Van Mieghem J. A., and Zhang D. J. (2021). Can Deep

Reinforcement Learning Improve Inventory Management? Performance on Lost

Sales, Dual Sourcing and Multi-Echelon Problems. Manufacturing and Service

Operations Management, Available at

SSRN: http://dx.doi.org/10.2139/ssrn.3302881.

Huang, Jing, Qing Chang, and Jorge Arinez. 2020. Deep Reinforcement Learning Based

Preventive Maintenance Policy for Serial Production Lines. Expert Systems with

Applications,160: 113701.

Iravani S., and Duenyas I. (2002). Integrated maintenance and production control of a

deteriorating production system. IIE Transactions, 34(5), 423–435.

Jafari L., and Makis V. (2015). Joint optimal lot sizing and preventive maintenance policy

for a production facility subject to condition monitoring. International Journal of

Production Economics, 169, 156-168.

https://dx.doi.org/10.2139/ssrn.3302881

43

Jafari L., and Makis V. (2019). Optimal Production and Maintenance Policy for a

Partially Observable Production System with Stochastic Demand. International

Journal of Industrial and Systems Engineering, 13 (7).

Jardine A., Lin D., and Banjevic D. (2006). A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and

Signal Processing, 20, 1483–1510.

Khatab A., Diallo C., Aghezzaf E-H., and Venkatadri U. (2018). Integrated production

quality and condition-based maintenance for a stochastically deteriorating

manufacturing system. International Journal Production Research, 57(8), 2480-

2497.

Li Y., Gama F. S., Liu M., Yang Z. (2023). A risk averse two-stage stochastic

programming model for a joint multi-item capacitated line balancing and lot-

sizing problem. European Journal of Operational Research, 304, 353-365.

Liao G.L., and Sheu S.H. (2011). Economic production quantity model for randomly

failing production process with minimal repair and imperfect maintenance.

International Journal of Production Economics, 130, 118-124.

Löhndorf N., and Minner S. (2013). Simulation optimization for the stochastic economic

lot scheduling problem. IIE Transactions, 45, 796-810.

Oroojlooyjadid, A., Nazari, M. , Snyder, L. V. and Takác, M. (2021). A deep Q-network

for the Beer Game: deep reinforcement learning for inventory optimization

Manufacturing and Service Operations Management, Available at

https://doi.org/10.1287/msom.2020.0939.

Peng H., and van Houtum G.-J. (2016). Joint Optimization of Condition-based

Maintenance and Production Lot-sizing. European Journal of Operational

Research 253, 94–107.

https://doi.org/10.1287/msom.2020.0939

44

Powell W.B. (2011). Approximate Dynamic Programming. Second edition. John Wiley

& Sons.

Qiu J., and Loulou R. (1995). Multiproduct production/inventory control under random

demands. IEEE Transactions on Automatic Control, 40(2), 350–356.

Shamsaei F., and Van Vyve M. (2017). Solving integrated production and condition-

based maintenance planning problems by MIP modeling. Flexible Services and

Manufacturing Journal, 29, 184-202.

Sloan, T.W. (2004). A Periodic Review Production and Maintenance Model with

Random Demand, Deteriorating Equipment, and Binomial Yield. Journal of the

Operational Research Society, 55(6), 647–656.

Sox C.R., Jackson P.L., Bowman A. and Muckstadt J.A. (1999). A review of the

stochastic lot scheduling problem. International Journal of Production

Economics, 62, 181-200.

Suliman S.M., and Jawad S.H. (2012). Optimization of preventive maintenance schedule

and production lot size. International Journal of Production Economics, 137, 19-

28.

Sutton R., and Barto A. (2018). Reinforcement Learning: An Introduction. Second

edition. MIT Press.

Vanvuchelen, N., Gijsbrechts, J. and Boute, R. (2020). Use of proximal policy optimiza-

tion for the joint replenishment problem. Computers in Industry, 119, 103239.

Wang. J., Xueping L., and Xiotan Z. (2012). Intelligent dynamic control of stochastic

economic lot scheduling by agent-based reinforcement learning. International

Journal of Production Research, 50(16), 4381-4395.

Watkins C.J. (1989). Learning from delayed rewards. Thesis (PhD). Cambridge: Kings

College.

45

Winands E., Adan I., and van Houtum G.J. (2011). The stochastic economic lot

scheduling problem: A survey. European Journal of Operational Research,

201(1), 1–9.

Xiang Y., Cassady C.R., Jin T., and Zhang C.W. (2014). Joint production and

maintenance planning with machine deterioration and random yield. International

Journal Production Research, 52(6),1644–1657.

Zheng R., Zhou Y., Gu L., Zhang Z. (2021). Joint optimization of lot sizing and condition-

based maintenance for production system using the proportional hazards model.

Computers and Industrial Engineering, 154.

Appendix A. Pseudocodes

1. Initialize starting state 𝑠, 𝑄(𝑠, 𝑎) = 0 for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠); 𝐴𝑉𝐶 (average cost)=0

2. For 𝑡 = 1, 2, … , 𝑇

2.1. Choose action 𝑎 ∈ 𝐴(𝑠) for state s (𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦)

2.2. Sample the cost 𝐶(𝑠, 𝑎) and the next state 𝑠′ based on the current state 𝑠 and action 𝑎

2.3. Update the Q-values by the equation:

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝐶(𝑠, 𝑎) + 𝛾 min
𝑎′∈𝐴(𝑠′)

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

2.4. Update 𝐴𝑉𝐶 ← (𝐴𝑉𝐶 (𝑡 − 1) + 𝐶(𝑠, 𝑎))/𝑡

2.5 If 𝑚𝑜𝑑(𝑡, 𝐾) = 0 and, then

 �̅�(𝑠) = 𝑁𝑡(𝑠)/𝑡 ∀ 𝑠 ∈ 𝑆

If 𝑡 = 𝐾, then

𝑉′(𝑠) = min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

else

𝑑𝑟 = 100 ∑ �̅�(𝑠) | min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) − 𝑉′(𝑠)| 𝑉′(𝑠)⁄

𝑠∈𝑆

𝑉′(𝑠) = min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

end

end

2.6. Update 𝑠 ← 𝑠′

3. Return 𝜇(𝑠) = 𝑎𝑟𝑔 min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

Figure A1. Steps of QL including online calculation of AVC and 𝑑𝑟 (every K steps)

46

1. Initialize starting state 𝑠, 𝑄(𝑠, 𝑎) = �̅�(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠); 𝐴𝑉𝐶 (average cost) = 0

2. For 𝑡 = 1, 2, … , 𝑇

2.1. Choose action 𝑎 ∈ 𝐴(𝑠); for state s (𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦)

2.2. Sample the cost 𝐶(𝑠, 𝑎) and the next state 𝑠′ based on the current state 𝑠 and action 𝑎

2.3. Update the Q-values by the equation:

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝐶(𝑠, 𝑎) + 𝛾 min
𝑎′∈𝐴(𝑠′)

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

2.4. Update 𝐴𝑉𝐶 (average cost) ← (𝐴𝑉𝐶 (𝑡 − 1) + 𝐶(𝑠, 𝑎))/𝑡

2.5 If 𝑚𝑜𝑑(𝑡, 𝐾) = 0 and, then

 �̅�(𝑠) = 𝑁𝑡(𝑠)/𝑡 ∀ 𝑠 ∈ 𝑆

If 𝑡 = 𝐾, then

𝑉′(𝑠) = min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

else

𝑑𝑟 = 100 ∑ �̅�(𝑠) | min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) − 𝑉′(𝑠)| 𝑉′(𝑠)⁄

𝑠∈𝑆

𝑉′(𝑠) = min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

end

end

2.6. Update 𝑠 ← 𝑠′

3. Return 𝜇(𝑠) = 𝑎𝑟𝑔 min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

Figure A2. Steps of IQL including online calculation of AVC and 𝑑𝑟 (every K steps)

1. Initialize starting state 𝑠, 𝑄(𝑠, 𝑎) = �̅�(𝑠, 𝑎) for all s ∈ S and 𝑎 ∈ 𝐴(𝑠); 𝐴𝑉𝐶 (average cost) = 0

2. For 𝑡 = 1, 2, … , 𝑇

 2.1. Choose action 𝑎 = 𝑎𝑟𝑔 min
𝑎∈𝐴(𝑠)

�̅�(𝑠, 𝑎)

 2.2. Sample the cost 𝐶(𝑠, 𝑎) and the next state 𝑠′ based on the current state 𝑠 and

action 𝑎

 2.3. Update 𝐴𝑉𝐶 ← (𝐴𝑉𝐶 (𝑡 − 1) + 𝐶(𝑠, 𝑎))/𝑡

 2.4. Update 𝑠 ← 𝑠′ and increment 𝑡

Figure A3. Steps for calculating the average cost of the heuristic method

47

Input 𝜇(𝑠) = 𝑎𝑟𝑔 min
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎) ∀ 𝑠 ∈ 𝑆

Algorithm parameter: a small threshold 𝜃 > 0 determining accuracy of estimation

Initialize 𝑉(𝑠), 𝑠 ∈ 𝑆

While ∆> 𝜃

 For each 𝑠 ∈ 𝑆

 𝑣 ← 𝑉(𝑠)

 𝑉(𝑠) ← 𝐶(𝑠, 𝜇(𝑠)) + 𝐸[𝑉(𝑠′)|𝑠, 𝜇(𝑠)]

 ∆← 𝑚𝑎𝑥{∆, |𝑣 − 𝑉(𝑠)|},

Figure A4. Steps for the policy evaluation

48

Appendix B. Factor values of tested problem instances

Table B1. Factor Values

 Factors

Case 𝑐𝑝 𝑐𝑙
1 𝑐ℎ

1 𝑐𝑙
2 𝑐ℎ

2

1 300 100 1 90 1

2 300 100 1 90 3

3 300 100 1 180 1

4 300 100 1 180 3

5 300 100 3 90 1

6 300 100 3 90 3

7 300 100 3 180 1

8 300 100 3 180 3

9 300 200 1 90 1

10 300 200 1 90 3

11 300 200 1 180 1

12 300 200 1 180 3

13 300 200 3 90 1

14 300 200 3 90 3

15 300 200 3 180 1

16 300 200 3 180 3

17 400 100 1 90 1

18 400 100 1 90 3

19 400 100 1 180 1

20 400 100 1 180 3

21 400 100 3 90 1

22 400 100 3 90 3

23 400 100 3 180 1

24 400 100 3 180 3

25 400 200 1 90 1

26 400 200 1 90 3

27 400 200 1 180 1

28 400 200 1 180 3

29 400 200 3 90 1

30 400 200 3 90 3

31 400 200 3 180 1

32 400 200 3 180 3

49

Appendix C. Results of the experiments

Table C1. Results of case 1

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.037 0.339 86.744 0.462 1.743 88.119 8.290 87.112 85.219

2 0.024 0.329 86.033 0.171 1.212 87.205

3 0.019 0.278 85.860 0.132 1.088 86.815

4 0.015 0.297 85.714 0.077 0.886 86.576

5 0.013 0.274 85.583 0.062 0.584 86.382

6 0.012 0.250 85.531 0.057 0.704 86.233

7 0.010 0.266 85.506 0.051 0.638 86.135

8 0.010 0.229 85.468 0.042 0.466 86.078

9 0.009 0.242 85.439 0.037 0.513 86.030

10 0.007 0.240 85.428 0.038 0.429 85.986

Table C2. Results of case 2

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.042 0.380 96.749 0.458 1.180 97.992 9.380 96.978 95.382

2 0.029 0.442 96.062 0.144 1.324 97.122

3 0.023 0.365 95.829 0.110 0.851 96.721

4 0.018 0.286 95.677 0.086 0.752 96.506

5 0.016 0.313 95.614 0.068 0.587 96.392

6 0.014 0.297 95.584 0.060 0.536 96.266

7 0.011 0.256 95.549 0.051 0.523 96.189

8 0.011 0.219 95.517 0.044 0.730 96.117

9 0.009 0.235 95.500 0.037 0.316 96.040

10 0.009 0.230 95.519 0.038 0.435 95.993

Table C3. Results of case 3

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.036 0.422 87.692 0.320 1.901 88.934 8.135 86.747 85.882

2 0.026 0.374 86.854 0.178 1.309 87.815

3 0.021 0.344 86.518 0.132 1.003 87.421

4 0.016 0.327 86.404 0.100 1.096 87.212

5 0.013 0.304 86.338 0.086 0.637 86.921

6 0.011 0.301 86.278 0.070 0.437 86.890

7 0.011 0.302 86.241 0.065 0.443 86.800

8 0.010 0.311 86.193 0.052 0.532 86.725

9 0.008 0.307 86.159 0.047 0.553 86.688

10 0.008 0.301 86.142 0.045 0.621 86.621

50

Table C4. Results of case 4

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.032 0.358 98.789 0.243 1.372 99.681 7.850 98.238 96.673

2 0.024 0.284 97.921 0.156 1.187 98.539

3 0.018 0.265 97.566 0.111 1.083 98.101

4 0.015 0.247 97.386 0.089 0.718 97.861

5 0.012 0.248 97.283 0.095 0.648 97.711

6 0.010 0.248 97.233 0.063 0.520 97.613

7 0.009 0.238 97.160 0.054 0.508 97.515

8 0.008 0.226 97.110 0.043 0.431 97.455

9 0.008 0.210 97.072 0.040 0.427 97.408

10 0.008 0.204 97.049 0.037 0.379 97.359

Table C5. Results of case 5

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.042 0.380 96.749 0.458 1.180 97.992 8.693 101.58 90.116

2 0.029 0.442 96.062 0.144 1.324 97.122

3 0.023 0.365 95.829 0.110 0.851 96.721

4 0.018 0.286 95.677 0.086 0.752 96.506

5 0.016 0.313 95.614 0.068 0.587 96.392

6 0.014 0.297 95.584 0.060 0.536 96.266

7 0.011 0.256 95.549 0.051 0.523 96.189

8 0.011 0.219 95.517 0.044 0.730 96.117

9 0.009 0.235 95.500 0.037 0.316 96.040

10 0.009 0.230 95.519 0.038 0.435 95.993

Table C6. Results of case 6

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.029 0.373 101.753 0.219 1.149 103.097 7.818 101.58 100.190

2 0.020 0.318 101.011 0.199 0.977 102.150

3 0.015 0.300 100.811 0.098 0.862 101.760

4 0.013 0.297 100.707 0.100 0.795 101.487

5 0.010 0.268 100.627 0.063 0.652 101.324

6 0.009 0.270 100.574 0.054 0.434 101.223

7 0.008 0.250 100.534 0.046 0.417 101.116

8 0.007 0.254 100.508 0.040 0.361 101.081

9 0.006 0.246 100.476 0.036 0.253 101.028

10 0.006 0.256 100.474 0.033 0.296 100.969

51

Table C7. Results of case 7

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.034 0.346 92.585 0.242 1.294 93.876 8.313 92.183 90.251

2 0.023 0.317 91.611 0.190 1.083 92.735

3 0.018 0.321 91.308 0.112 0.757 92.265

4 0.015 0.323 91.167 0.093 0.845 92.011

5 0.012 0.340 91.059 0.071 0.837 91.857

6 0.011 0.293 90.995 0.064 0.501 91.735

7 0.009 0.302 90.917 0.055 0.561 91.614

8 0.008 0.256 90.866 0.049 0.510 91.535

9 0.008 0.271 90.844 0.042 0.514 91.475

10 0.007 0.249 90.797 0.037 0.277 91.442

Table C8. Results of case 8

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.030 0.380 103.254 0.218 0.893 104.860 7.554 102.872 101.334

2 0.021 0.345 102.422 0.176 0.972 103.701

3 0.016 0.341 102.132 0.099 0.612 103.230

4 0.013 0.341 101.966 0.078 0.545 102.966

5 0.011 0.337 101.841 0.085 0.494 102.779

6 0.010 0.354 101.810 0.054 0.470 102.685

7 0.008 0.393 101.771 0.048 0.437 102.621

8 0.008 0.335 101.745 0.041 0.292 102.554

9 0.007 0.319 101.702 0.036 0.278 102.475

10 0.006 0.303 101.673 0.034 0.349 102.405

Table C9. Results of case 9

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.038 0.526 87.530 0.270 2.427 88.653 8.672 89.100 85.667

2 0.028 0.464 86.782 0.205 1.323 87.714

3 0.022 0.520 86.596 0.140 0.955 87.340

4 0.017 0.429 86.429 0.112 1.110 87.117

5 0.016 0.412 86.347 0.085 0.752 86.955

6 0.012 0.389 86.290 0.068 0.830 86.811

7 0.011 0.446 86.254 0.064 0.620 86.734

8 0.009 0.386 86.231 0.055 0.424 86.685

9 0.009 0.388 86.207 0.053 0.524 86.637

10 0.008 0.401 86.201 0.043 0.366 86.606

52

Table C10. Results of case 10

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.034 0.465 97.655 0.245 1.182 98.783 7.951 99.437 95.691

2 0.023 0.417 96.832 0.162 1.200 97.695

3 0.020 0.391 96.502 0.149 0.989 97.344

4 0.014 0.310 96.341 0.093 1.597 97.150

5 0.012 0.315 96.226 0.071 1.350 96.996

6 0.011 0.287 96.167 0.060 1.294 96.899

7 0.010 0.279 96.102 0.052 1.141 96.848

8 0.008 0.281 96.082 0.045 0.396 96.774

9 0.008 0.268 96.045 0.042 0.356 96.733

10 0.007 0.259 96.020 0.039 0.393 96.705

Table C11. Results of case 11

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.041 0.356 88.568 0.300 1.956 89.617 8.836 90.631 85.910

2 0.029 0.319 87.661 0.196 1.402 88.771

3 0.023 0.334 87.310 0.143 0.912 88.255

4 0.019 0.308 87.107 0.138 0.736 88.036

5 0.015 0.253 86.974 0.096 0.599 87.819

6 0.014 0.279 86.882 0.077 0.691 87.733

7 0.011 0.331 86.839 0.067 0.699 87.611

8 0.010 0.297 86.810 0.057 0.508 87.514

9 0.010 0.258 86.786 0.054 0.549 87.499

10 0.008 0.245 86.767 0.045 0.491 87.452

Table C12. Results of case 12

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.035 0.328 99.284 0.319 1.293 100.636 7.764 98.342 96.650

2 0.024 0.313 98.290 0.171 1.090 99.398

3 0.019 0.334 97.892 0.134 1.081 98.888

4 0.016 0.298 97.753 0.090 0.611 98.598

5 0.013 0.277 97.631 0.075 0.663 98.381

6 0.012 0.285 97.540 0.066 0.430 98.214

7 0.010 0.261 97.493 0.054 0.408 98.112

8 0.009 0.267 97.427 0.048 0.338 98.023

9 0.008 0.278 97.417 0.043 0.328 97.948

10 0.008 0.256 97.390 0.041 0.384 97.888

53

Table C13. Results of case 13

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.036 0.273 93.030 0.279 1.174 94.134 8.142 93.982 91.335

2 0.024 0.274 92.212 0.162 0.896 93.089

3 0.020 0.277 91.863 0.122 0.807 92.703

4 0.016 0.225 91.731 0.087 1.274 92.431

5 0.013 0.215 91.615 0.075 1.169 92.254

6 0.011 0.262 91.546 0.065 1.226 92.137

7 0.010 0.213 91.493 0.058 0.350 92.056

8 0.009 0.196 91.503 0.048 0.278 91.978

9 0.008 0.193 91.458 0.043 0.413 91.930

10 0.007 0.194 91.448 0.041 0.242 91.876

Table C14. Results of case 14

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.031 0.255 103.085 0.226 0.897 104.536 8.817 103.763 101.212

2 0.022 0.212 102.267 0.137 0.784 103.444

3 0.017 0.178 101.955 0.108 0.819 103.045

4 0.013 0.177 101.787 0.084 0.395 102.773

5 0.012 0.198 101.740 0.068 0.734 102.600

6 0.010 0.158 101.715 0.057 0.407 102.468

7 0.009 0.159 101.698 0.048 0.447 102.382

8 0.008 0.155 101.659 0.042 0.603 102.334

9 0.007 0.153 101.659 0.037 0.325 102.272

10 0.006 0.140 101.644 0.033 0.273 102.242

Table C15. Results of case 15

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.038 0.294 93.818 0.271 1.306 95.447 8.035 95.396 91.791

2 0.027 0.262 92.953 0.169 0.983 94.152

3 0.021 0.226 92.580 0.128 0.713 93.562

4 0.016 0.241 92.370 0.096 0.782 93.249

5 0.014 0.236 92.255 0.086 0.521 93.078

6 0.013 0.240 92.187 0.067 0.435 92.909

7 0.011 0.235 92.144 0.060 0.525 92.778

8 0.010 0.229 92.086 0.049 0.393 92.688

9 0.009 0.211 92.040 0.046 0.328 92.598

10 0.008 0.256 92.032 0.042 0.242 92.545

54

Table C16. Results of case 16

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.033 0.298 105.675 0.232 1.102 106.708 7.229 104.656 102.591

2 0.024 0.250 104.699 0.151 1.413 105.508

3 0.019 0.232 104.268 0.109 0.651 105.046

4 0.016 0.191 104.094 0.086 0.721 104.750

5 0.013 0.222 103.990 0.068 0.528 104.568

6 0.011 0.237 103.904 0.062 0.401 104.455

7 0.009 0.229 103.855 0.056 0.497 104.376

8 0.009 0.202 103.837 0.045 0.329 104.288

9 0.008 0.245 103.810 0.041 0.528 104.215

10 0.007 0.209 103.770 0.038 0.271 104.147

Table C17. Results of case 17

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.037 0.457 98.162 0.285 2.093 99.518 11.053 99.00 96.244

2 0.024 0.411 97.538 0.178 1.311 98.665

3 0.019 0.393 97.251 0.125 0.995 98.022

4 0.016 0.390 97.104 0.097 0.706 97.732

5 0.013 0.459 97.044 0.082 0.798 97.397

6 0.012 0.376 96.986 0.069 1.461 97.223

7 0.010 0.355 96.924 0.059 1.108 97.198

8 0.009 0.345 96.887 0.058 1.325 97.112

9 0.008 0.368 96.861 0.047 1.038 97.092

10 0.007 0.327 96.841 0.041 0.467 97.057

Table C18. Results of case 18

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.030 0.328 107.812 0.237 1.171 108.975 9.885 108.621 106.249

2 0.022 0.302 107.144 0.210 1.198 108.045

3 0.015 0.291 106.906 0.119 1.028 107.687

4 0.013 0.251 106.781 0.091 0.884 107.440

5 0.011 0.203 106.695 0.072 0.596 107.326

6 0.009 0.214 106.670 0.059 0.593 107.212

7 0.008 0.192 106.622 0.050 0.545 107.147

8 0.007 0.213 106.599 0.046 0.508 107.067

9 0.007 0.192 106.577 0.039 0.397 107.021

10 0.006 0.172 106.576 0.039 0.407 106.983

55

Table C19. Results of case 19

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.035 0.422 98.894 0.308 2.104 100.334 10.734 99.160 97.109

2 0.024 0.357 98.119 0.180 1.160 99.169

3 0.019 0.328 97.797 0.138 1.259 98.707

4 0.015 0.310 97.654 0.103 0.965 98.439

5 0.013 0.287 97.567 0.081 0.803 98.270

6 0.012 0.279 97.525 0.077 0.627 98.166

7 0.010 0.281 97.492 0.058 0.580 98.073

8 0.009 0.309 97.476 0.058 0.654 97.992

9 0.008 0.273 97.437 0.046 0.367 97.944

10 0.007 0.273 97.421 0.041 0.439 97.877

Table C20. Results of case 20

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.031 0.392 109.869 0.251 1.424 111.184 9.624 110.212 107.754

2 0.021 0.360 109.010 0.162 1.248 110.144

3 0.017 0.327 108.717 0.124 0.898 109.701

4 0.014 0.364 108.528 0.113 0.910 109.403

5 0.012 0.330 108.463 0.095 0.723 109.190

6 0.010 0.303 108.399 0.061 0.598 109.035

7 0.009 0.318 108.358 0.054 0.565 108.947

8 0.009 0.285 108.314 0.048 0.386 108.874

9 0.008 0.291 108.281 0.042 0.505 108.810

10 0.006 0.264 108.259 0.038 0.381 108.757

Table C21. Results of case 21

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.031 0.417 102.893 0.320 1.604 104.371 10.369 103.532 101.467

2 0.022 0.397 102.301 0.161 1.203 103.461

3 0.017 0.373 102.089 0.116 0.969 103.098

4 0.013 0.351 101.911 0.092 0.896 102.881

5 0.012 0.321 101.794 0.076 0.661 102.708

6 0.010 0.334 101.752 0.060 0.640 102.598

7 0.010 0.324 101.745 0.055 0.634 102.515

8 0.008 0.313 101.704 0.048 0.581 102.447

9 0.007 0.273 101.658 0.043 0.554 102.391

10 0.006 0.271 101.625 0.035 0.396 102.348

56

Table C22. Results of case 22

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.028 0.346 113.279 0.223 1.291 114.246 9.468 113.259 110.932

2 0.020 0.301 112.536 0.138 1.532 113.338

3 0.016 0.253 112.266 0.102 1.225 112.956

4 0.013 0.238 112.152 0.076 0.739 112.716

5 0.010 0.241 112.075 0.063 0.438 112.538

6 0.009 0.231 112.002 0.056 0.974 112.386

7 0.008 0.240 111.976 0.049 0.489 112.304

8 0.007 0.236 111.962 0.042 0.384 112.222

9 0.007 0.209 111.963 0.037 0.405 112.165

10 0.006 0.204 111.940 0.046 0.522 112.118

Table C23. Results of case 23

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.249 0.329 103.991 0.032 1.479 105.332 10.236 103.787 101.888

2 0.166 0.316 103.190 0.023 0.933 104.209

3 0.116 0.298 102.907 0.018 0.788 103.705

4 0.091 0.298 102.719 0.014 0.675 103.459

5 0.073 0.288 102.618 0.012 0.578 103.265

6 0.062 0.304 102.503 0.012 0.501 103.142

7 0.055 0.264 102.452 0.009 0.5 103.006

8 0.046 0.272 102.416 0.008 0.381 102.916

9 0.045 0.254 102.380 0.008 0.427 102.844

10 0.039 0.254 102.341 0.007 0.32 102.780

Table C24. Results of case 24

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.029 0.234 114.472 0.224 1.708 116.066 9.189 114.70 112.417

2 0.020 0.218 113.675 0.174 0.856 114.976

3 0.016 0.172 113.349 0.109 0.592 114.527

4 0.013 0.158 113.169 0.083 0.755 114.265

5 0.010 0.158 113.013 0.071 0.611 114.057

6 0.010 0.144 112.941 0.058 0.491 113.941

7 0.008 0.145 112.895 0.048 0.357 113.853

8 0.008 0.141 112.852 0.044 0.475 113.766

9 0.007 0.131 112.813 0.040 0.295 113.684

10 0.006 0.170 112.809 0.036 0.260 113.637

57

Table C25. Results of case 25

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.039 0.268 99.198 0.304 1.970 100.179 10.522 101.11 97.314

2 0.026 0.179 98.384 0.186 1.377 98.944

3 0.021 0.179 98.108 0.136 0.948 98.538

4 0.017 0.200 97.990 0.106 0.817 98.256

5 0.014 0.157 97.911 0.085 0.704 98.117

6 0.012 0.168 97.868 0.074 0.617 97.985

7 0.012 0.155 97.820 0.063 0.550 97.917

8 0.010 0.151 97.807 0.059 0.685 97.860

9 0.009 0.148 97.770 0.053 0.562 97.803

10 0.008 0.165 97.737 0.048 0.438 97.736

Table C26. Results of case 26

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.033 0.387 109.249 0.256 1.531 110.404 9.497 110.939 106.951

2 0.025 0.304 108.377 0.165 1.771 109.282

3 0.019 0.275 108.045 0.164 1.429 108.790

4 0.014 0.276 107.830 0.099 0.869 108.509

5 0.012 0.283 107.725 0.109 0.706 108.316

6 0.011 0.289 107.666 0.062 1.100 108.119

7 0.009 0.272 107.633 0.057 1.051 108.017

8 0.008 0.293 107.584 0.048 0.955 107.928

9 0.007 0.291 107.542 0.045 0.951 107.852

10 0.006 0.289 107.508 0.037 1.027 107.786

Table C27. Results of case 27

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.039 0.520 99.690 0.288 1.594 101.190 10.52 102.334 97.270

2 0.028 0.405 98.673 0.200 1.269 99.929

3 0.023 0.386 98.291 0.154 0.994 99.368

4 0.019 0.405 98.095 0.113 0.877 99.084

5 0.015 0.357 97.970 0.089 0.576 98.849

6 0.014 0.364 97.890 0.078 0.777 98.724

7 0.012 0.375 97.833 0.066 0.676 98.591

8 0.010 0.369 97.743 0.058 0.585 98.499

9 0.010 0.353 97.700 0.049 0.519 98.395

10 0.009 0.303 97.663 0.045 0.413 98.340

58

Table C28. Results of case 28

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.035 0.231 110.831 0.385 1.593 112.270 9.324 113.111 108.049

2 0.024 0.259 109.831 0.171 1.098 110.856

3 0.019 0.181 109.498 0.123 0.846 110.318

4 0.015 0.200 109.315 0.099 0.752 109.999

5 0.013 0.191 109.178 0.088 0.497 109.783

6 0.011 0.195 109.092 0.065 0.368 109.643

7 0.010 0.197 109.036 0.058 0.489 109.513

8 0.010 0.174 108.961 0.050 1.052 109.428

9 0.008 0.194 108.923 0.045 1.075 109.354

10 0.008 0.216 108.875 0.041 1.014 109.286

Table C29. Results of case 29

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.034 0.533 104.677 0.256 2.052 105.452 10.186 105.963 102.305

2 0.025 0.426 103.819 0.166 1.016 104.406

3 0.019 0.368 103.455 0.117 0.968 104.020

4 0.015 0.391 103.316 0.096 0.709 103.720

5 0.014 0.356 103.213 0.077 0.650 103.556

6 0.012 0.354 103.131 0.065 0.413 103.399

7 0.010 0.357 103.087 0.061 0.505 103.287

8 0.009 0.340 103.049 0.051 0.412 103.211

9 0.008 0.344 103.019 0.044 0.312 103.120

10 0.007 0.349 102.984 0.037 0.296 103.074

Table C30. Results of case 30

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.029 0.211 114.400 0.246 1.258 115.640 7.760 115.607 112.51

2 0.022 0.198 113.541 0.145 0.931 114.474

3 0.016 0.166 113.284 0.109 0.915 114.036

4 0.013 0.185 113.138 0.085 0.446 113.823

5 0.011 0.154 112.993 0.069 0.555 113.664

6 0.010 0.147 112.959 0.056 0.513 113.539

7 0.008 0.127 112.870 0.051 0.236 113.418

8 0.007 0.122 112.853 0.043 0.329 113.328

9 0.007 0.116 112.824 0.038 0.353 113.260

10 0.006 0.097 112.779 0.033 0.331 113.212

59

Table C31. Results of case 31

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.037 0.370 104.941 0.271 1.711 106.982 9.704 107.012 103.111

2 0.026 0.312 104.106 0.171 1.485 105.501

3 0.021 0.277 103.835 0.166 1.290 104.949

4 0.018 0.285 103.662 0.101 1.372 104.663

5 0.014 0.226 103.585 0.098 0.968 104.450

6 0.013 0.254 103.538 0.070 0.930 104.317

7 0.011 0.253 103.496 0.061 0.818 104.241

8 0.009 0.251 103.431 0.054 0.763 104.164

9 0.009 0.167 112.408 0.049 0.765 104.086

10 0.008 0.245 103.387 0.042 0.646 104.018

Table C32. Results of case 32

 IQL QL Heuristic Value iteration

Iteration

(millions)
𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑟 𝑑𝑜𝑝𝑡 AVC 𝑑𝑜𝑝𝑡 AVC AVC

1 0.033 0.178 117.085 0.245 1.083 118.038 8.465 117.716 114.493

2 0.023 0.172 116.087 0.153 1.087 116.719

3 0.019 0.193 115.700 0.138 0.851 116.255

4 0.014 0.173 115.509 0.091 0.679 115.927

5 0.012 0.176 115.429 0.071 0.622 115.701

6 0.011 0.170 115.336 0.058 0.492 115.582

7 0.009 0.163 115.279 0.055 0.586 115.464

8 0.009 0.165 115.239 0.048 0.289 115.386

9 0.008 0.151 115.201 0.040 0.324 115.318

10 0.007 0.152 115.174 0.038 0.305 115.276

Appendix D

In order to try to establish the Bellman equation in a somewhat compact form, the

following notation is introduced:

• 𝟏𝑋=𝐹 is the indicator variable with value equal to 1 if and only if 𝑋 = 𝐹

• 𝑅𝑛 is a binary variable and takes value 1 if preventive maintenance is carried out

in period 𝑛, otherwise it is equal to 0.

Adopting this notation, the Bellman optimality equation can be established in

the following form:

60

𝑉(𝑋 = 𝑖, 𝐼1, … , 𝐼|𝑀|)

= min
𝑞𝑚=𝐶𝜌𝑚 𝑌𝑚 ∀𝑚∈𝑀

∑ 𝑌𝑚
𝑚∈𝑀 +𝑅+𝟏𝑋=𝐹≤1

𝑞𝑚+𝐼𝑚≤𝐼𝑚𝑎𝑥
𝑚 ∀𝑚∈𝑀

{𝑐𝑐𝟏𝑋=𝐹 + 𝑅𝑐𝑝 + (𝑅 + 𝟏𝑋=𝐹) ∑ [
2

𝑐ℎ
𝑚𝐸[(𝐼𝑚 − 𝐷𝑚)+]

2

𝑚∈𝑀

+

2

𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝐼𝑚)+] + 𝛾𝐸 [𝑉 (1, (𝐼1 − 𝐷1)+, … , (𝐼|𝑀| − 𝐷|𝑀|)

+
)]

2

]

+ (1 − ∑ 𝑌𝑚

𝑚∈𝑀
− 𝑅 − 𝟏𝑋=𝐹) ∑ [

2
𝑐ℎ

𝑚𝐸[(𝐼𝑚 − 𝐷𝑚)+]

2

𝑚∈𝑀

2

+𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝐼𝑚)+] + 𝛾𝐸 [𝑉 (𝑖, (𝐼1 − 𝐷1)+, … , (𝐼|𝑀| − 𝐷|𝑀|)

+
)]

2

]

+ ∑ 𝑌𝑚 [∑ [𝑐ℎ
𝑢𝐸[(𝐼𝑢 − 𝐷𝑢)+] + 𝑐𝑙

𝑢𝐸[(𝐷𝑢 − 𝐼𝑢)+]]

𝑢∈𝑀∖{𝑚}𝑚∈𝑀

+ ∑ [(𝐏(𝐦)(𝑞𝑚))
𝑖𝑗

𝐹−1

𝑗=𝑖
(𝑐𝑠

𝑚 + 𝑐𝑚𝑞𝑚 + 𝑐ℎ
𝑚𝐸[(𝐼𝑚 + 𝑞𝑚 − 𝐷𝑚)+] + 𝑐𝑙

𝑚𝐸[(𝐷𝑚 − 𝑞𝑚 − 𝐼𝑚)+]

+𝛾 𝐸 [𝑉(𝑗, (𝐼1 − 𝐷1)+, … , (𝐼𝑚 + 𝑞𝑚 − 𝐷𝑚)+, … , (𝐼|𝑀| − 𝐷|𝑀|)
+

)])]

+ ∑ [𝑃{𝑇𝐹(𝑚)(𝑖) = 𝑘}
𝑞𝑚

𝑘=1
(𝑐𝑠

𝑚 + 𝑐𝑚𝑘 + 𝑐ℎ
𝑚𝐸[(𝐼𝑚 + 𝑘 − 𝐷𝑚)+]

+

2

𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝑘 − 𝐼𝑚)+] + 𝛾𝐸 [𝑉(𝐹, (𝐼1 − 𝐷1)+, … , (𝐼𝑚 + 𝑘 − 𝐷𝑚)+, … , (𝐼|𝑀| − 𝐷|𝑀|)

+
)])]

2

]}

where the subscripts 𝑛 have been suppressed to make the notation more concise

and because the problem is stationary. The constraint 𝑞𝑚 = 𝐶𝜌𝑚 𝑌
𝑚 ∀𝑚 ∈ 𝑀, ensures

that either production is done at full capacity for product 𝑚 or item 𝑚 is not produced;

and the constraint 𝑞𝑚 + 𝐼𝑚 ≤ 𝐼𝑚𝑎𝑥
𝑚 ∀𝑚 ∈ 𝑀, excludes “producing item 𝑚” from the

action space if 𝑞𝑚 + 𝐼𝑚 would exceed 𝐼𝑚𝑎𝑥
𝑚 . Under the constraint ∑ 𝑌𝑚

𝑚∈𝑀 +

61

𝑅+𝟏𝑋=𝐹 ≤ 1, there are four possibilities: (1) a particular product can be produced, (2)

preventive maintenance is conducted, (3) corrective maintenance is done if the

equipment is at the failure level indicating 𝟏𝑋=𝐹 = 1, (4) the system is kept idle.

Appendix E

For subproblem 𝑚 ∈ 𝑀, the optimal state-action values 𝑄(𝑠𝑚, 𝑎𝑚), with 𝑠𝑚 =

(𝑋 = 𝑖, 𝐼𝑚) ∈ 𝑆𝑚 and action 𝑎𝑚 ∈ 𝐴𝑚, satisfy

𝑄𝑚(𝑖, 𝐼𝑚, 𝑎𝑚) = 𝐸𝐶𝑚(𝑖, 𝐼𝑚, 𝑎𝑚) + 𝛾𝐸[𝑉𝑚(𝑖′, 𝐼𝑚′
), |𝑖, 𝐼𝑚, 𝑎𝑚],

𝑎𝑚

∈ {

 {𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒, 𝑑𝑜 𝑝𝑟𝑣. 𝑚𝑎𝑖𝑛𝑡. } 𝑖𝑓 𝐶𝜌𝑚 + 𝐼𝑚 > 𝐼𝑚𝑎𝑥
𝑚 𝑎𝑛𝑑 𝑖 < 𝐹

{𝑠𝑡𝑎𝑦 𝑖𝑑𝑙𝑒, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑞𝑚 = 𝐶𝜌𝑚 , 𝑑𝑜 𝑝𝑟𝑣. 𝑚𝑎𝑖𝑛𝑡. (𝑅 = 1)} 𝑖𝑓 𝐶𝜌𝑚 + 𝐼𝑚 ≤ 𝐼𝑚𝑎𝑥
𝑚 𝑎𝑛𝑑 𝑖 < 𝐹

{𝑑𝑜 𝑐𝑜𝑟. 𝑚𝑎𝑖𝑛𝑡. } 𝑖𝑓 𝑖 = 𝐹

where 𝑉𝑚(𝑖′, 𝐼𝑚′
) = min

𝑎𝑚
′

𝑄𝑚(𝑖′, 𝐼𝑚′
, 𝑎𝑚

′), is the optimal value function, and

𝐸𝐶𝑚(𝑖, 𝐼𝑚, 𝑎𝑚) is the one-period expected cost given by

𝐸𝐶𝑚(𝑖, 𝐼𝑚, 𝑎𝑚) = 𝑐𝑐𝟏𝑋=𝐹 + 𝑅𝑐𝑝 + (1 − 𝑌𝑚) (𝑐ℎ
𝑚𝐸[(𝐼𝑚 − 𝐷𝑚)+]

+𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝐼𝑚)+]) + 𝑌𝑚 (

1
𝑃{𝑇𝐹(𝑚)(𝑖) > 𝑞𝑚} (𝑐𝑠

𝑚 + 𝑐𝑚𝑞𝑚 + 𝑐ℎ
𝑚𝐸[(𝐼𝑚 + 𝑞𝑚 − 𝐷𝑚)+]

1

+𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝑞𝑚 − 𝐼𝑚)+])

+ ∑ [
2

𝑃{𝑇𝐹(𝑚)(𝑖) = 𝑘}

2

(𝑐𝑠
𝑚 + 𝑐𝑚𝑘 + 𝑐ℎ

𝑚𝐸[(𝐼𝑚 + 𝑘 − 𝐷𝑚)+]
𝑞𝑚

𝑘=1

2
+𝑐𝑙

𝑚𝐸[(𝐷𝑚 − 𝑘 − 𝐼𝑚)+])

2
]),

which satisfies 𝑌𝑚 + 𝑅+𝟏𝑋=𝐹 ≤ 1. 𝑉𝑚(𝑋 = 𝑖, 𝐼𝑚) is the total minimum expected cost

of the subproblem 𝑚 ∈ 𝑀 and for state 𝑠𝑚 = (𝑋 = 𝑖, 𝐼𝑚). It can be expressed as

62

𝑉𝑚(𝑋 = 𝑖, 𝐼𝑚) = min
𝑞𝑚=𝐶𝜌𝑚 𝑌𝑚

𝑌𝑚+𝑅+𝟏𝑋=𝐹≤1

𝑞𝑚+𝐼𝑚≤𝐼𝑚𝑎𝑥
𝑚

{
2

𝑐𝑐𝟏𝑋=𝐹 + 𝑅𝑐𝑝 + (𝑅 + 𝟏𝑋=𝐹)(𝑐ℎ
𝑚𝐸[(𝐼𝑚 − 𝐷𝑚)+]

2

+𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝐼𝑚)+] + 𝛾𝐸[𝑉𝑚(1, (𝐼𝑚 − 𝐷𝑚)+)])

+(1 − 𝑌𝑚 − 𝑅 − 𝟏𝑋=𝐹)(𝑐ℎ
𝑚𝐸[(𝐼𝑚 − 𝐷𝑚)+] +

+𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝐼𝑚)+] + 𝛾𝐸[𝑉𝑚(𝑖, (𝐼𝑚 − 𝐷𝑚)+)])

+𝑌𝑚 (∑ [

2
 (𝐏(𝐦)(𝑞𝑚))

𝑖𝑗

2

𝐹−1

𝑗=𝑖
(𝑐𝑠

𝑚 + 𝑐𝑚𝑞𝑚 + 𝑐ℎ
𝑚𝐸[(𝐼𝑚 + 𝑞𝑚 − 𝐷𝑚)+]

+
2

𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝑞𝑚 − 𝐼𝑚)+] + 𝛾𝐸[𝑉𝑚(𝑗, (𝐼𝑚 + 𝑞𝑚 − 𝐷𝑚)+])

2
]

+ ∑ [
2

𝑃{𝑇𝐹(𝑚)(𝑖) = 𝑘}

2

(𝑐𝑠
𝑚 + 𝑐𝑚𝑘 + 𝑐ℎ

𝑚𝐸[(𝐼𝑚 + 𝑘 − 𝐷𝑚)+]
𝑞𝑚

𝑘=1

+ 𝑐𝑙
𝑚𝐸[(𝐷𝑚 − 𝑘 − 𝐼𝑚)+] +

2
𝛾𝐸 [𝑉𝑚(𝐹 ,(𝐼𝑚 + 𝑘 − 𝐷𝑚)+])

2
]) }.

Appendix F

Table F1. Step size parameters for IQL and QL

Number of

Products
IQL QL

 𝑏0 𝑏 𝑏0 𝑏

2 1 1 1 5

3 0.1 50 1 5

4 0.1 50 1 5

Table F2. Algorithmic parameters for QLA1, QLA2 and QLA3

Number of

Products
QLA1 QLA2 QLA3

 𝜖 𝑏0 𝑏 𝜖 𝑏0 𝑏 𝜖 𝑏0 𝑏

4 0.3 10−3 105 0.3 0.02 500 0.2 1 5

10 0.3 10−3 105 0.3 0.02 103 0.2 0.1 50

Supplementary Material. One step probability transition matrices of degradation

𝑷𝟏 (one step probability transition matrix of the products with a production rate of 1) =

𝑷2 (one step probability transition matrix of the products with a production rate of 2) =

