1	Characterisation of fruit	juices and effect of	pasteurisation and	storage conditions on their
---	---------------------------	----------------------	--------------------	-----------------------------

2 microbial, physicochemical, and nutritional quality

- 3 Juliana Mandha^{a, b}, Habtu Shumoy^a, Athanasia O. Matemu^b, Katleen Raes^{a*}
- 4 ^a Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent
- 5 University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
- ⁶ ^bDepartment of Food Biotechnology and Nutritional Sciences, Nelson Mandela African Institution
- 7 of Science and Technology, 447, Arusha, Tanzania.
- 8 * Corresponding author:
- 9 Email address: Katleen.Raes@UGent.be (R. Katleen)
- 10 Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University
- 11 Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500, Kortrijk, Belgium
- 12 Tel: 32-56-322008
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23

24 Abstract

25 Characterization, pasteurization and storage are essential steps in fruit juice processing. 26 Watermelon, pineapple, and mango juices were pasteurized at $80 \pm 2^{\circ}C$ and held at different 27 treatment times (1, 2.5, 5, 10, and 15 min). Juice yield, pH, proximate composition, total soluble 28 solids, color, vitamin C, microbial quality, mineral content, enzyme activity (polyphenol oxidase 29 (PPO), and peroxidase (POD)), total phenolic content, and antioxidant capacity were measured 30 during pasteurization and cold storage (4°C). Results showed that watermelon juice had the 31 highest crude protein, pH, and moisture content while pineapple juice had the highest titratable 32 acidity, vitamin C and mineral content (potassium, calcium, magnesium, manganese, and zinc) 33 and mango juice had the highest juice yield, and total soluble solids. Regardless of the holding 34 time, pasteurization reduced total plate counts and yeast and molds to below detectable limits (1 35 log CFU/mL). Vitamin C was undetectable in watermelon juice after 10 min of pasteurization 36 compared to mango juice with a 27% reduction. Pasteurization preserved mango juice color, but 37 watermelon juice became less red and more yellow with increasing treatment time. POD was more 38 thermoresistant than PPO and needed a treatment time of at least 5 min to obtain 80% reduction. 39 Storage of more than 9 days negatively affected the watermelon color, total phenolic content and 40 antioxidant capacities of watermelon juice pasteurized at 15 min and vitamin C content of control 41 mango juice. Thus, pasteurization and storage affect the quality of fruit juices depending on the 42 fruit types and their composition. 43 Keywords: thermal processing, enzymes, fruit quality, fruit juice, nutrient composition

44

45 **1. Introduction**

46 Consumers nowadays are health cautious and demand healthy foods with enhanced shelf life. 47 Fruits are nutritious, with a low caloric value and rich in vitamins, minerals, phenolic compounds, 48 organic acids, and carotenoids. These bioactive compounds have antibacterial, antioxidant, anti-49 inflammatory, and radioprotective properties that reduce incidences of heart disease and cancer 50 (Dhalaria et al., 2020). However, not all fruits have the same nutritional value and chemical 51 composition. These properties vary depending on botanical variety, cultivation practices, weather, 52 maturity, and processing techniques (Lozano, 2006; Tzia et al., 2015). Fruit quality influences 53 consumer acceptability. Therefore, their characterization is important to evaluate quality and obtaining this information is an essential step in food product development as it provides insights 54 55 that can be used as decisive factors.

56 Fruits are usually consumed fresh. However, their edible portion has a high moisture content, 57 making them highly susceptible to spoilage from microorganisms, physical damage, and 58 degradation. Untreated fruit juices have been associated with the breakout of food-borne diseases 59 due to contamination by pathogenic microorganisms such as Escherichia coli O157:H7, Listeria monocytogenes, or Salmonella spp (Tribst, Sant Ana, & de Massaguer, 2009). Therefore, thermal 60 61 treatment such as pasteurization is an intrinsic part of fruit juice processing to ensure microbial 62 safety and to inactivate enzymes such as polyphenol oxidase (PPO), and peroxidase (POD) that could lead to undesirable sensory and nutritive changes (Petruzzi et al., 2017). However, fruit 63 64 juices are thermo-sensitive and may undergo physical and chemical changes that impair their 65 organoleptic quality and reduce the content or bioavailability of bioactive compounds (Petruzzi et 66 al., 2017). Pasteurization may negatively affect juice quality factors, such as color, antioxidant activity or polyphenols and vitamin C content of fruit juice depending on the processingconditions, fruit variety and type.

Currently, fruit juices are heated at varying temperatures and time combinations (72 - 108 °C, > 69 70 15s or > 30s) (Chen, Yu, & Rupasinghe, 2013) which makes comparison of results difficult. 71 Therefore, efforts are needed to modify the pasteurization temperature/time combinations to 72 obtain suitable conditions that minimize biochemical and nutritional changes. Although thermal 73 treatment increases the shelf-life of food products, food quality is not constant and, it continuously 74 changes from time to time (Wibowo et al., 2015a). During storage, several deteriorative chemical 75 reactions may degrade the quality characteristics of fruit products depending on the type of fruit, 76 juice composition, storage conditions, packaging material, and storage temperature (Aguiló-77 Aguayo et al., 2009; Vásquez-Caicedo, et al., 2007).

Therefore, in this context, watermelon (*Citrullus lanatus cv* sugar baby), pineapple (*Ananas Comosus*), and mango (*Mangifera indica, L. cv* Kagoogwa) juices were characterized for their physicochemical, chemical, and microbial quality. The pasteurization holding time at 80 °C was optimized, and the quality changes of watermelon and mango juices were investigated after pasteurization and throughout the 14-day refrigerated storage.

83 **2. Materials and methods**

84 **2.1. Media and chemicals**

De Man-Rogosa-Sharpe (MRS), Rose Bengal chloramphenicol agar (RBC), plate count agar
(PCA), Xylose Lysine Deoxycholate medium (X.L.D), Rapid' *E. coli* agar and bacteriological agar
were purchased from Oxoid LTD (Basingstoke, Hampshire, England). ABTS (2,2'-azino-bis (3ethylbenzothiazoline-6-sulfonic acid)), Trolox (6-hydroxyl-2,5,7,8-tetramethylchroman-2carboxylic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl), gallic acid, Folin–Ciocalteu (FC)

90 reagent, sodium dodecyl sulfate, ascorbic acid, L-proline, saponin, tropolone and hydrogen 91 peroxide were purchased from Sigma-Aldrich Co. (Overijse, Belgium). Kjeldahl tablet, and 92 indicators (tashiro, phenolphthalein, and 2,6-dichloroindophenol) were purchased from VWR 93 International (Leuven, Belgium). Inductively coupled plasma (ICP) multi-element standard 94 solution IV was procured from Merck KGak (Darmstadt, Germany), and pyrocatechol was 95 purchased from Union Chimique Belge (Brussels, Belgium).

96 2.2. Plant Materials

97 Mature watermelon (*Citrullus lanatus cv* sugar baby), pineapple (*Ananas Comosus*), and mango 98 fruits (*Mangifera indica, L. cv* Kagoogwa) were purchased from Nakasero market, Kampala, 99 Uganda (latitude: 00°18'42.34" N, longitude: 32°34'46.34" E). The fruits were physically checked 100 for integrity, insect contamination, and size/color uniformity. The screened samples were then 101 packaged in air-tight boxes and cold transported by air to the Research Unit VEG-i-TEC of Ghent 102 University, Kortrijk, Belgium. Upon arrival, the fruits were again inspected and kept for a 103 maximum of 3 days at 4°C before analysis.

104 **2.3. Sample preparation**

The fruits were washed in distilled water. Thereafter, the fleshy mesocarp was sliced from the peel/ rind and seed, manually diced, and mixed using a domestic blender (Joseph, MI USA) to obtain juice. This juice was then homogenized using an Ultra-Turrax (IKA T18, Staufen, Germany) at 10,000 rpm for 15 min. No water, additional sugar, or preservative was added. Each fruit part was determined and reported as a percentage proportion of the whole fruit.

110 **2.4. Pasteurization and storage**

111 Fruit juice (25 mL) was pasteurized according to Shaheer et al. (2014) in sterile glass containers

112 (previously sterilized at 121 °C for 15 min) in a warm water bath (Memmert WNB 45, Schwabach,

Germany) under continuous shaking. The time taken for heat transfer from the external temperature (95°C) to the internal sample temperature at the center of the bottle (central geometrical point) was monitored using a digital thermometer (TFA Dostmann/Werthein) sterilized with 90% ethanol. Samples were pasteurized at $80 \pm 2^{\circ}$ C and held at different treatment times of 1, 2.5, 5, 10, and 15 min corresponding to P1, P2.5, P5, P10, P15, respectively. The samples were rapidly cooled thereafter in an ice-water bath (0 °C). The control was unpasteurized fruit juice.

The samples were then stored in the dark in sterile 25 mL Schott Duran glass bottles at 4°C for 14 days. The glass bottles were tightly closed with screw caps. Analyses including microbiological quality, color, fruit quality (total soluble solids, pH, titratable acidity, vitamin C), enzyme activity, antioxidant capacity, and total phenolic content were determined before pasteurization, after pasteurization and at 0, 2, 5, 9, 14 days of storage. Both treatments and determinations were carried out in duplicates.

126 **2.5. Microbiological analyses**

127 All samples were analyzed for Escherichia coli, total coliforms, Salmonella spp, aerobic plate 128 count, yeast and molds as recommended by the European Commission regulation (EC 1441), 129 (2007) using Rapid' E.coli agar, X.L.D agar, PCA agar and RBC agar supplemented with 100 130 mg/L chloramphenicol, respectively. Briefly, aliquots of each sample (1 mL) were mixed 131 thoroughly with 9 mL sterile saline diluent for 1 min using a vortex (Vortex-genie 2, Thermo Fisher Scientific Inc., Waltham, MA, USA) and serially diluted $(10^{-1} - 10^{-7})$. Subsequently, 0.1 132 133 mL aliquots of each dilution were dispensed on appropriate plates using the standard spread plate 134 method. The plates were incubated for 24 h (Rapid' E. coli and X.L.D), 3 days (PCA), and 5 days 135 (RBC) at optimal temperatures of 44°C (Rapid' E. coli) and 37°C (Rapid' E. coli and X.L.D) and 136 20°C (plate count agar and RBC) under microaerophilic conditions (Downes & Ito, 2001). Results

137 were expressed as colony-forming units per mL (log CFU/mL).

138 **2.6. Determination of physicochemical properties**

139 pH and total soluble solids (TSS) were measured at 20°C by direct reading on a digital pH meter 140 (FC 2020) and refractometer (Carl Zeiss Abbe 13641, Germany), respectively. The pH meter was 141 calibrated with buffer solutions (4, 7, and 10) before use, and the refractometer prism was cleaned 142 with distilled water before each analysis. Total soluble solids were determined using a 143 refractometer and reported as degrees Brix (°Brix). Titratable acidity (TA) was determined by 144 titrating 5 mL juice sample diluted in 50 mL distilled water with 0.1 M sodium hydroxide to the 145 endpoint (pH 8.2 \pm 0.1 and phenolphthalein indicator turn to light pink) (Tyl & Sadler, 2017). 146 Total acidity was expressed as grams of citric acid equivalents per 100 mL (g CAE/100 mL) for 147 pineapple and mango juice and as malic acid equivalents (g MAE/100 mL) for watermelon juice.

148 **2.7. Determination of vitamin C**

149 Vitamin C (ascorbic acid) was determined using a titration method described by Nielsen (2017) 150 using 2,6-dichloroindophenol dye as the indicator. Briefly, fresh metaphosphoric acid-acetic acid 151 solution was prepared by mixing 20 mL acetic acid, 100 mL distilled water, and 7.5 g 152 metaphosphoric acid in a 250 mL volumetric flask and filled to the mark with distilled water. 153 Indophenol standard solution was prepared by dissolving 42 mg sodium bicarbonate in 50 mL 154 distilled water and adding 50 mg 2,6-dichloroindophenol sodium salt. The mixture was thoroughly 155 mixed and brought to the 200 mL mark with distilled water. The mixture was further filtered in a 156 fluted filter paper (particle retention $5 - 13 \,\mu$ m). into an amber bottle. Ascorbic acid standard (1 157 mg/mL) was prepared in the metaphosphoric-acetic acid solution immediately before use. To 5 158 mL metaphosphoric acid - acetic acid solution, 2 mL ascorbic acid standard solution or juice

159 sample was added and titrated against indophenol solution until a light but distinct rose-pink color

- 160 persisted for 5 s. Results were expressed as mg of ascorbic acid equivalents (AAE) per 100 mL of
- 161 fruit juice and calculated as;

162 Ascorbic acid
$$(mg/mL) = (X-B) * (F/E) * (V/Y)$$
 (1)

- 163 where: X = mL for sample titration, B = average mL for sample blank titration, F = titer of dye, E
- 164 = mL assayed, V = volume of initial assay solution, Y = volume of sample aliquot titrated

165 **2.8. Color assessment**

166 Color was determined using a Hunter colorimeter (HunterLab Colorflex EZ, Hunter Associates 167 Laboratory, Virginia, U.S.A.) at illuminant D65, 10° standard observer, 45°/ 0° geometry and 168 quantified based on the CIELAB color scales adopted as a standard by the International 169 Commission on Illumination, *i.e.*, L* (lightness and luminance), a* (red and green), b* (blue and 170 yellow) scales. The instrument was calibrated with a white standard plate. Ten coordinate readings 171 were taken at different random points of each sample and the average value was calculated. The 172 hue angle (h°) and chroma (C) and total color difference (ΔE) were calculated using the following 173 equations, according to Perkins-Veazie & Collins (2004), i.e.,

174
$$h^{\circ} = \tan^{-1} (b^*/a^*)$$
 (2)

175
$$C = \sqrt{(a^{*2} + b^{*2})}$$
 (3)

176
$$\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$
 (4)

177 **2.9. Determination of chemical composition of fruit juices**

The moisture and protein content of each sample were determined using International Organization
of Standardization (ISO) 1442-1997 and ISO 937-1978 respectively. A factor of 6.25 was used for
the conversion of nitrogen to crude protein. Crude ash was determined according to AOAC (2010)

181 method number 945.46. About 2 g fruit juice was completely carbonized over low heat in a high-182 form porcelain crucible and ashed overnight at 550°C in a Muffle oven. The weight difference was 183 calculated after cooling in a desiccator to room temperature. Crude ash content was expressed as 184 g/100mL of fruit juice.

185 Essential minerals; iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), magnesium (Mg), 186 potassium (K), calcium (Ca), and sodium (Na) were determined using the inductively coupled 187 plasma optical emission spectrometry (ICP-OES) (Varian, PTY Ltd., Victoria, Australia) as 188 described by Ashoka et al. (2009). In brief, obtained crude ash was subsequently dissolved in 5 189 mL 65% nitric acid, filtered, and mineral content measured using ICP-OES with Thermo iCAP 7200 Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) which was equipped with 190 191 a peristaltic pump (0.76 mm), cyclonic spray chamber, concentric nebulizer, quartz plasma torch, 192 and 2.0 mm alumina internal diameter injector. The instrumental parameters used were: 1180 W 193 RF power, 12.0 L/min plasma flow rate, 0.5 L/min auxiliary gas flow rate, 0.5 L/min nebulizer 194 flow rate, radial view, 15 min UV exposure time, 5 min VIS exposure time, 10 min warm-up, and 195 40 min wash time. The wavelengths selected for Cu, Fe, Mn, Zn, K, Na, Ca, and Mg were 224.7, 196 239.6, 260.6, 202.6, 766.5, 589.6, 422.7, and 285.2 nm, respectively. Standard plot analytical 197 curves for each element with a fit factor of above 0.99 were used to calculate the concentration of 198 the elements in the samples compared to multi-element stock standard. Results were expressed as 199 mg/100 mL of fruit juice.

200 2.10. Analysis of polyphenol oxidase (PPO) and peroxidase (POD) activities

Enzyme extractions were prepared as previously described by Wulfkuehler et al. (2013). For each juice extract (5 mL), 25 mL of 50 mM chilled citrate-phosphate buffer (pH 6.5), 150 mg polyvinyl polypyrrolidone, 400 mg sodium chloride and 50 mg saponin were added. The mixture was homogenized using Ultra-Turrax at 6000 rpm for 2 min and incubated on a shaker (BioSan PSU10i Orbital Shaker, Riga, Latvia) at 250 rpm, 7°C for 2 h. The extracts were then centrifuged
(Hermle Z 300 K, Wehingen, Germany) at 4000 rpm for 20 min at 4°C and the supernatants were
filtered through a filter paper. The clarified supernatants were kept on ice until PPO and POD
activity assays were performed on the same day.

209 PPO and POD activities were assayed as described by Baur et al. (2004) with some modifications. 210 Total PPO was determined in the presence of sodium dodecyl sulfate (SDS) and the reaction 211 mixture comprised of 1.5 mL reaction buffer (RB) (2 mM SDS in citrate-phosphate buffer (pH 212 6.5)), 0.2 mL 0.5 M L-proline in RB, and 0.1 mL enzyme extract. After 40 s incubation at 37 °C, 213 the reaction was started by the addition of 0.2 mL pyrocatechol and product formation was 214 continuously measured by the accumulation of the pink proline-catechol adduct at 525 nm ($\varepsilon =$ 550 L M⁻¹ cm⁻¹) for 3 min using a Spectrophotometer (Shimadzu UV-1800 spectrophotometer, 215 216 Kioto, Japan). The enzyme activity (U/mL) was calculated from the slope of the linear part of the 217 absorbance time plot. One unit of enzyme activity is defined as the amount of PPO that produces 218 1 µmol of the reaction product in 1 min under the specified conditions.

For POD activity, 0.3 mL aliquot of enzyme extract was added to 1.95 mL substrate buffer (SB) comprising 12 mM tropolone in citrate–phosphate buffer (pH 6.5). After 40 s incubation at 37 °C, the reaction was started by adding 75 μ L of 31 mM hydrogen peroxide. Product formation was followed by measuring the accumulation of the yellow product Spectrophotometrically at 418 nm ($\epsilon = 2075 \text{ L M}^{-1} \text{ cm}^{-1}$) for 3 min. The enzyme activity (U/mL) was calculated from the slope of the linear part of the absorbance time plot. One unit of enzyme activity is defined as the amount of POD that produces 1 µmol of the reaction product in 1 min under the specified conditions.

226 **2.11. Determination of total phenolic content (TPC)**

Total phenolic compounds were extracted using 80% methanol, as described by Gonzales et al. (2014). Briefly, 5 mL juice sample was added to 15 mL methanol (80%) and homogenized using Ultra-Turrax homogenizer at 10,000 rpm for 45 s and immediately kept on ice for 15 min. The homogenate was then centrifuged at 4000 rpm, 4°C for 15 min, filtered in the dark, and the obtained pellets were re-extracted with 10 mL methanol (80%) using the same procedure. The collected supernatants were then pooled, filled to 25 mL with methanol, and stored at -20°C in the dark until further analyses.

Total phenolic content (TPC) was determined using the Folin–Ciocalteu (FC) method according to Huynh et al. (2014). About, 1 mL methanolic extract was added to 1 mL deionized water and vortex mixed with 0.5 mL of 10 times diluted FC reagent in deionized water. After 6 min of standing, 1.5 mL sodium carbonate (20% w/v) and 1 mL deionized water was added, vortex mixed, and incubated in the dark for 2 h at ambient temperature. The absorbance of the mixture was then measured using a Spectrophotometer at 760 nm and TPC was expressed as mg gallic acid equivalent (GAE)/100 mL of fruit juice.

241 **2.12. Antioxidant activities**

242 A stock solution of ABTS+ was prepared by mixing equal amounts of 7 mM ABTS radical cation 243 and 2.45 mM potassium persulfate, which were left to react for 12 - 16 h in the dark at ambient 244 temperature. The working solution was subsequently prepared by diluting the stock solution with 245 methanol (90%) to an absorbance of 0.70 ± 0.02 at 734 nm equilibrated at 30 °C. Aliquots (20 µL) 246 of each sample extract or Trolox standard solution or methanol (90%) (blank) were then added to 247 2 mL of the ABTS+ solution, vortex mixed, and incubated for 5 min in the dark at room 248 temperature. Thereafter, the absorbance of the resulting solution was measured Spectrophotometrically at 734 nm, and results were expressed in mg Trolox equivalent (TE)/100
mL of fruit juice (Re et al., 1999).

The reducing ability of antioxidants in the samples towards DPPH was also measured using the procedure by Brand-Williams et al. (1995). Aliquots (200μ L) of sample extracts/Trolox standards solutions were vortex mixed for 10 s with 4 mL DPPH solution (prepared by dissolving 3.94 mg DPPH in 100 mL pure methanol) and incubated for 30 min at room temperature in the dark. The absorbance of the mixture was then measured using a Spectrophotometer at 517 nm. Results were expressed in mg TE/100 mL of fruit juice.

257 2.13. Statistical analysis

Statistical analysis was done using GraphPad Prism (Version 8.0.0 for macOS, San Diego, CA, USA). One-way analysis of variance (ANOVA) was used to analyze any variations in the fruit juice characteristics and during the treatments. Multiple range test (Tukey's HSD test) was further used to compare any significant differences in their means. Significance difference was accepted at p < 0.05 and values are expressed as mean \pm SD of two independent samples. Student t-test was used to check any differences between two groups.

264 **3. Results and discussion**

265 **3.1. Proportion of fruit parts**

The different proportions of watermelon, pineapple, and mango fruits parts are shown in Table S1. Mango juice had the highest juice yield (70.3% w/w) followed by watermelon (52.2% w/w) and pineapple (48.4% w/w). This is an important parameter in the food industry to estimate profit margins from fruit juice yields. Overall, the fruits exhibited a by-product proportion that ranged from 51% w/w in pineapple to 30% w/w in mango. These findings are consistent with other studies that showed a by-product proportion of 54.9% in pineapple (Misran et al., 2019) and 35% in 272 mango (Tesfaye, 2017). Peels made up the largest by-product proportion (16.2 - 43.3% w/w)273 compared to the seeds, pomace, and crown. These by-products are often discarded as waste that 274 contributes to environmental impact.

275 **3.2. Characterization of fruit juices**

276 **3.2.1. Microbial quality**

277 As shown in Table 1, all treatments showed acceptable microbiological quality (counts lower than 278 the limit amount of 7 log cfu/mL for plate count and 4 log cfu/mL for yeasts and moulds) for 279 human consumption (Uyttendaele et al., 2018). The samples were also safe as per the International 280 Commission on Microbiology Specifications for Foods (ICMSF) (2011) guidelines given their 281 Escherichia coli, total coliforms and Salmonella spp were below the detection limit of 1 log 282 CFU/mL. Pineapple and mango juices had the lowest aerobic plate counts and yeasts and molds 283 compared to the watermelon juice. The presence of these microorganisms in fresh produce is often 284 a reflection of contact with the environment, *i.e.*, soil, water, and animals, contamination during 285 harvest (equipment or handlers) and cross-contamination during processing (Gil et al., 2015).

286 **3.2.2. Physicochemical characteristics**

287 Pineapple juice had the lowest pH value (3.40) whereas watermelon juice had the highest value of 288 5.40. These findings are similar to other studies that reported a pH of 3.58 - 4.69 in pineapple juice 289 (Lu et al., 2014) and 5.83 in watermelon juice (Liu et al., 2012). Titratable acidity of all the samples 290 ranged between 0.14% and 1.04%. The dominant organic acids reported in watermelon, mango 291 and pineapple juices are mainly malic acid, citric acid, oxalic acid, tartaric acid, and succinic acid 292 (Jin et al., 2018). Juice acidity plays a key role in its sensory acceptability by consumers (Mandha 293 et al., 2021). Total soluble solids varied in the fruit juices, with the highest value recorded in mango 294 juice (13.6 °Brix) and lowest in watermelon juice (5.07 °Brix). This variability could be attributed

to differences in fruit types, cultivars, fruit maturity, growing location, cultivation practices,
harvest time, and climate (Lozano, 2006).

3.2.3. Vitamin C

298 Vitamin C is a chain-breaking antioxidant that inhibits the oxidation of lipids hence preventing the 299 formation of free radicals that could lead to chronic diseases such as cancer (Padayatty et al., 2003). 300 Pineapple and mango juices had the highest vitamin C contents at 63.7 mg AAE/100 mL and 61.2 301 mg AAE/100 mL, respectively. These results were higher than those reported by Chakraborty et 302 al. (2015) in pineapple juice and Zaman et al. (2016) in mango juice at 54 mg/100 mL and 50.7 303 mg AAE/100 mL, respectively. Vitamin C content in watermelon juice was lower than the results 304 reported by Olayinka and Etejere (2018) (2.27 mg/100 mL). The occurrence of vitamin C may 305 depend on fruit type, fruit cultivars, and environmental conditions such as light, high temperature, 306 oxygen and storage (Kabasakalis et al., 2000).

307 **3.2.4. Color**

308 Table 1 also depicts the color of the fruit juices. The CIE L*, a*, and b* values varied within the 309 fruit juices. The L* values show the lightness of the juices with 0 = black and 100 = white. Mango 310 juice was the lightest, having the highest L* value, whereas watermelon juice was the darkest. 311 Mango and pineapple juices tended to be more yellow (b*) than watermelon juice. Pineapple juice 312 was more green than mango and watermelon juices, which were more red (a*). These findings are 313 comparable to other similar studies (Tarazona-Díaz & Aguayo, 2013). Color pigments, mainly 314 carotenoids are responsible for the attractive bright colors of juices. Lycopene makes up 90% of 315 carotenoids in red-fleshed watermelon cultivars (Kyriacou et al., 2018). The color intensity 316 (chroma) was strongest in mango juice (57.2) followed by pineapple juice (17.7) and then 317 watermelon juice (5.86).

318 **3.2.5.** Chemical composition of fruit juices

weather, and maturity (Lozano, 2006).

327

319 Watermelon juice had the highest moisture content compared to mango and pineapple juices 320 (Table 1). This finding agrees with other research that also found a high moisture content of 321 watermelon pulp (94%) (Olayinka & Etejere, 2018). The high moisture content makes this juice 322 an excellent food product to quench thirst, however, it becomes highly susceptible to microbial 323 spoilage if unprocessed for a long period. Crude protein was significantly highest in watermelon 324 juice, followed by mango juice and then pineapple juice. The ash content of watermelon and 325 pineapple juice samples was significantly higher than in mango juice. Differences in the chemical 326 composition of among the fruit juices may be due to their botanical variety, cultivation practices,

328 Regarding minerals, K was the highest element followed by in decreasing order, Ca, Mg, Na, Fe, 329 Zn, Mn and Cu. Considering the fruit juices, watermelon juice had the highest amounts of Na, Cu, 330 and Fe contents, pineapple juice had the highest amounts of K, Ca, Mg, Mn, and Zn while mango 331 juice had the lowest values except for Na, Mn, and Zn. Previous researchers have also described 332 pineapple as a good source of minerals especially calcium (Lu et al., 2014). Differences in the 333 mineral composition among the fruit types may be due to differences in the composition of the 334 growing soil, irrigation water, harvesting seasons, and ripening stages (Camara et al., 2005). 335 Minerals are needed for the body's metabolism and homeostasis (Gharibzahedi & Jafari, 2017). 336 Microelements play a vital role as structural parts of enzymes (metalloenzymes) such as 337 superoxide dismutase (Cu, Zn, Mn, Fe), hydrogenase (Fe) and catalase (Fe) (Gupta, 2018). In 338 addition, Fe is needed in the formation of hemoglobin in the red blood cell, Mn is a scavenger of 339 free radicals and is important for normal functioning of the brain and proper activity of the nervous

340 system and Zn, even at low levels, is essential in protein and nucleic acid synthesis (Gharibzahedi341 & Jafari, 2017).

342 3.3. Effect of pasteurization and storage on quality attributes of watermelon and mango343 juices

344 Basing on the characterization, watermelon and mango juices were selected to be studied further. 345 The initial temperature of both watermelon and mango juices was between $17^{\circ}C$ and $20^{\circ}C$ (Table 346 S2). The temperature increase in mango juice was more gradual than in watermelon juice (Fig. 347 **S1**). In addition, heat transfer time to obtain the internal temperature of 80° C was two-fold higher 348 in mango juice than watermelon juice. Hence, mango juice had a lower heating rate (0.31 \pm 349 0.03°C/s). This is maybe attributed to juice complexity, *i.e.*, texture, thickness, and type of fruit 350 whereby watermelon juice had higher moisture content (92%) that absorbs heat faster by 351 convection. There were no significant differences in the pasteurization holding temperature, 352 external temperature, cooling medium, and cooling temperature.

353 **3.3.1. Microbial quality**

354 Regardless of the holding time, pasteurization reduced the total plate count and yeast and molds 355 to below detectable limits of 1 log CFU/mL in both fruit juices (Table 2). Microorganisms are 356 more vulnerable to increased temperature than physical and chemical changes and enzyme 357 inactivation (Ryley & Kajda, 1994). Heat kills microorganisms by denaturing their enzymes and 358 destroying their cell membrane. Pathogenic bacteria (E. coli, Salmonella spp. and total coliforms) 359 were below detectable limits of 1 log CFU/mL in all the samples indicating their safety. 360 Pasteurization maintained a good microbial quality of both juices during the entire storage period. 361 However, there was a gradual increase of aerobic plate counts in unpasteurized (control) 362 watermelon juice reaching a maximum of 8.33 log CFU/mL on day 14 and yeasts and molds of 6.99 log CFU/mL on day 9 (**Table 3**). This finding is consisted with the results of Ma et al. (2020)
who showed a rapid microbial deterioration of non-industrial watermelon juice during storage.
Watermelon juice had a pH of 5.40 might favor the growth of microorganisms (Hammes & Hertel,
2015)

367 3.3.2. Physicochemical properties

Pasteurization did not significantly affect the pH, TA and TSS of mango and watermelon juices. This finding match results observed in earlier studies in watermelon juice enriched with Lcitrulline and pomegranate juice (Tarazona-Díaz et al., 2017; Turfan et al., 2011). During cold storage, the TA and pH of all the pasteurized juices did not change (**Table 3**). However, TSS of watermelon P10 and P15 increased during storage. Similar trends were also observed in rosellemango juices and this was attributed to the hydrolysis of polysaccharides into monosaccharides during storage (Mgaya-Kilima et al., 2015).

375 All these quality parameters significantly changed in the unpasteurized juices during storage. For 376 instance, the TA significantly increased to 0.27 on day 14 in unpasteurized watermelon juice. 377 Similarly, Unluturk and Atilgan (2015) observed an increase in TA of white grape juice. This 378 could be due to the metabolic activity of microorganisms or fermentation during storage resulting 379 in the production short chain fatty acids (Feng et al., 2013). The total soluble solids of the 380 unpasteurized mango juice decreased from 15.0 to 14.1 by day 14. TSS, pH, and TA are closely 381 influence the juice sensory attributes of sweetness, acidity, and taste (Sarrwy et al., 2021) and are 382 determined by genotype, maturity and growing conditions of the fruit (Y1km1, 2020). The effect 383 of cold storage on the physicochemical properties depended on the fruit type and thermal 384 treatment.

385

386 **3.3.3. Vitamin C**

387 Table 2 also depicts the effect of pasteurization on the vitamin C content of the fruit juices. 388 Vitamin C content gradually decreased with an increase in pasteurization time in both juices (r^2, r^2) 389 0.865, p < 0.001 in watermelon juice and r², 0.892, p < 0.001 in mango juices). At 10 min of 390 pasteurization, a decrease of 27% was recorded in mango juice, while vitamin C was not detectable 391 in watermelon juice. This result corroborates with previous research that showed a negative effect 392 of temperature and temperature duration on vitamin C content of fruit juices (Tchuenchieu et al., 393 2018). Vitamin C is heat liable and is easily oxidized to dehydroascorbic acid on exposure to 394 atmospheric oxygen (Ryley & Kajda, 1994). 395 Cold Storage (4°C) also had a substantial impact on the vitamin C content (**Table 3**). Vitamin C

was not detected on day 2 in P5 and day 14 in P2.5 watermelon juices. A gradual decrease in
vitamin C was recorded in the control mango juice. Other authors have also shown a reduction of
vitamin C in mango juice during storage (Mgaya-Kilima et al., 2015). This may be attributed to
oxidation due to the presence of oxygen in the headspace.

400 **3.3.4. Color**

401 Color is an important quality parameter for the marketability and consumer acceptability of fruit 402 juices. Pasteurization did not affect the color attributes of mango juice. The carotenoids in mango 403 juice, such as β -carotene, naturally occur in their stable form (*cis*-isomer), which may explain the 404 color stability during processing (Vásquez-Caicedo et al., 2007). All the color components of 405 watermelon juice significantly changed (p < 0.05) with increased pasteurization time. As 406 illustrated in Table 2, the a* value which depicts redness, significantly decreased while the b* value (yellowness) increased. This led to an increase in the h° and chroma of the pasteurized 407 408 watermelon juice. Hence, watermelon juice changed from its natural characteristic red color to

409 more yellow with the increment of pasteurization time. These results agree with previous research 410 that reported an increase in b* values of watermelon juice subjected to heat treatment (90 °C, 60 411 s). The color pigments in watermelon juice, mainly lycopene, are thermolabile hence degraded 412 during pasteurization following a first order kinetics modal *i.e.*, their degradation rate increases 413 with treatment time (Sharma et al., 2008) and may also undergo oxidation. Lycopene may be 414 fragmented into different molecules, such as acetone, methylheptenone, and laevulinic aldehyde, 415 which leads to an apparent color loss (Xianquan et al., 2005). Formation of dark compounds could 416 be attributed to Maillard reactions (Aguiló-Aguayo et al., 2009). Maillard reactions are a complex 417 series of reactions between carbonyl-containing compounds namely, reducing sugars, aldehydes, 418 or ketones with a free amino group of amino acids, peptides, or proteins (Vhangani & Van Wyk, 419 2021). They are may lead to the formation of furfural and 5-hydroxymethylfurfural (HMF) 420 compounds which have been associated with cytotoxic, genotoxic, and mutagenic risks (Vollmer 421 et al., 2020). 5-Hydroxymethylfurfural was not detected in thermally pasteurized pineapple 422 (Vollmer et al., 2020) and orange juices (Vervoort et al., 2012), however, these compounds may 423 further be investigated in pasteurized watermelon juice.

424 On day 9 of storage, both unpasteurized and pasteurized watermelon juices became less red, less 425 yellow and had lower chroma (Fig. 1). Tarazona-Díaz et al. (2017) attributed watermelon juice 426 color changes during storage to loss of stability due to residual enzyme activity. Storage time did 427 not affect the color of the pasteurized mango juices, but unpasteurized mango juice became darker 428 and less red by the end of the 14-day. Similarly, other researchers have shown color degradation 429 of mango juice during storage, and this was attributed to enzymatic or non-enzymatic browning from the oxidation of polyphenols and/or fading of naturally occurring the color pigments 430 431 (Wibowo et al., 2018; Wibowo et al., 2015b).

432 **3.3.5. Enzyme activity**

433 Polyphenol oxidase (PPO) and peroxidase (POD) reduce the stability and quality of fruit juices, 434 such as color, pigment, viscosity, formation of off-flavors, and loss of nutrients (Petruzzi et al., 435 2017; Taranto et al., 2017), hence their inactivation is important in the food industry. As presented 436 in Table 2, the PPO activity was about 0.10 U/mL and 0.8 U/mL in the control watermelon juice 437 and mango juice, respectively. Zhang et al. (2011) did not detect any PPO activity in watermelon 438 juice. This may be due to differences in the fruit cultivars. PPO induces the conversion of phenolic 439 compounds to quinones that polymerize with amino acids, proteins, or other compounds with 440 brownish, black, or red color pigments hence changing the color quality of fruit juice (Taranto et al., 2017). Pasteurization strongly affected PPO leading to undetectable levels in mango juice after 441 442 1 min, and a reduction of 80% in watermelon juice after 5 min. These results are in accordance 443 with other studies that demonstrated a reduction of PPO activity in watermelon juice and mango 444 slices after heat treatment (Liu et al., 2012; Ndiaye et al., 2009).

POD catalyzes the oxidation of hydrogen-donor molecules (Ağçam et al., 2018). This enzyme activity was reduced proportionally to the increasing pasteurization holding time (p < 0.05). These results corroborate previous findings that similarly described a reduction of POD activity in watermelon and mango juice after heat treatment (Tarazona-Díaz et al., 2017; Vásquez-Caicedo et al., 2007). In comparison with PPO, POD was more thermoresistant and required a pasteurization time of at least 5 min to obtain 80% activity reduction in both juices.

451 **3.3.6.** Total phenolic content and antioxidant capacity

452 Mango juice had a five-folds higher TPC than watermelon juice. Pasteurization time did not 453 change the TPC values of both watermelon and mango juices, demonstrating the thermal stability 454 of these compounds. This finding is consistent with previous studies that showed no significant change of fruit juice TPC with conventional thermal treatment (Saikia et al., 2016). However, during storage, the TPC of pasteurized mango juices at P10 increased on day 5 (**Table 2**). Tchuenchieu et al. (2018) reported an increase of TPC in fruit juices heated (50 °C – 90 °C) for a longer treatment time. The authors attributed this effect to liberation of molecules previously complexed or polymerized and the retention of active molecules by the inactivation of enzymes.

Pasteurization did not change the antioxidant capacity of the juices using both DPPH and ABTS assays. This trend continued during the storage period in mango juices. However, in P2.5 and P15 watermelon juice, antioxidant capacity using DPPH activity significantly decreased on day 9 and 5, respectively. This decline may be attributed to the oxidation of bioactive compounds in watermelon juice during storage (Tarazona-Díaz & Aguayo, 2013). Further research using sophisticated analytical tools may be conducted to estimate the changes of these bioactive compounds in fruit juices after pasteurization.

467 **4. Conclusion**

468 Considerable variations were shown in watermelon, pineapple, and mango juices' 469 physicochemical, chemical composition, and quality parameters. Although pasteurization ensured 470 and prolonged microbial safety of both juices, it had different effects on the color, vitamin C, PPO, 471 and POD enzyme activities depending on the fruit juice and their composition. Watermelon color 472 was negatively affected by pasteurization. A pasteurization time of 10 min strongly reduced the 473 vitamin C content of both juices. POD was more thermoresistant than PPO requiring a 474 pasteurization time of at least 5 min to obtain 80% activity reduction. During cold storage (4°C), 475 watermelon juice color deteriorated after 9 days, and the vitamin C content of the control mango 476 juice gradually decreased with storage time. Total phenolic content increased in mango juice 477 pasteurized at 10 min but decreased in watermelon juice pasteurized at 15 min upon storage. Thus,

to maintain fruit quality, eliminate background microflora and inactivate enzymes, in watermelon
and mango juices, a pasteurization time of 5 min and cold storage of no more than 9 days may be
applied.

481 **Declarations of competing interest**

The authors confirm that they have no conflicts of interest with respect to the work described inthis manuscript.

484 Acknowledgements

485 This work was supported by BOF Special Research Fund (01W03717 and BOF19/PDO/026) of

486 Ghent University, Centre for Research, agricultural Advancement, Teaching Excellence and

487 Sustainability (CREATES) of Nelson Mandela African Institution of Science and Technology

488 (NM-AIST), and L'OREAL–UNESCO for Women in Science Sub-Saharan regional fellowship.

489 **References**

490 Ağçam, E., Akyildiz, A., & Dündar, B. (2018). Thermal pasteurization and microbial

491 inactivation of fruit juices. In G. Rajauria & K. B. Tiwari (Eds.), Fruit Juices: Extraction,

- 492 *Composition, Quality and Analysis.* Dublin:Academic press. p. 309–339. ISBN:978-0-12493 8022230-6.
- Aguiló-Aguayo, I., Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Changes in
 quality attributes throughout storage of strawberry juice processed by high-intensity pulsed
- 496 electric fields or heat treatments. *LWT Food Science and Technology*, 42(4), 813–818.
- 497 Aguiló-Aguayo, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Avoiding non-enzymatic
- browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon
 juices. *Journal of Food Engineering*, 92(1), 37–43.
- AOAC. (2010). Official Methods of Analysis of Association of Official Analytical Chemists
 (AOAC) (16th ed.). Arlington, Virgini, USA: AOAC International.
- 502 Ashoka, S., Peake, B. M., Bremner, G., Hageman, K. J., & Reid, M. R. (2009). Comparison of

503 digestion methods for ICP-MS determination of trace elements in fish tissues. *Analytica*

504 *Chimica Acta*, *653*, 191–199.

- Baur, S., Klaiber, R. G., Koblo, A., & Carle, R. (2004). Effect of different washing procedures
 on phenolic metabolism of shredded, packaged iceberg lettuce during storage. *Journal of Agricultural and Food Chemistry*, 52(23), 7017–7025.
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to
 evaluate antioxidant activity. *LWT Food Science and Technology*, 28(1), 25–30.
- 510 Camara, M., Diez, C., & Torija, E. (2005). Chemical characterization of pineapple juices.
 511 Principal components analysis. *Food Chemistry*, *54*, 93–100.
- 512 Chakraborty, S., Rao, P. S., & Mishra, H. N. (2015). Effect of combined high pressure-
- 513 temperature treatments on color and nutritional quality attributes of pineapple (*Ananas*
- 514 *comosus L.*) puree. *Innovative Food Science and Emerging Technologies*, 28, 10–21.
- 515 Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., & Kuca,
- 516 K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A
- 517 comprehensive review to prolong human life. *Antioxidants*, 9(11), 1–38.
- 518 Downes, F. P., & Ito, K. (2001). *Compendium of methods for the microbiological examination of*519 *foods* (4th ed.). Washington (DC): American Public Health Association.
- 520 European commission regulation (EC 1441). (2007). COMMISSION REGULATION (EC) No
- 521 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on
- 522 microbiological criteria for foodstuffs. Offical Journal of the European Union, 322: 2-29.
- 523 Internet: https://op.europa.eu/en/publication-detail/-/publication/da6af822-3c2b-4ba2-85aa-
- 524 8fabaac106e4/language-en (accessed January, 2022)
- Feng, M., Ghafoor, K., Seo, B., Yang, K., & Park, J. (2013). Effects of ultraviolet-C treatment in
 Teflon®-coil on microbial populations and physico-chemical characteristics of watermelon
 juice. *Innovative Food Science and Emerging Technologies*, 19, 133–139.
- 528 Gharibzahedi, S. M. T., & Jafari, S. M. (2017). The importance of minerals in human nutrition:
- Bioavailability, food fortification, processing effects and nanoencapsulation. *Trends in Food Science and Technology*, 62, 119–132.
- 531 Gil, M. I., Selma, M. V., Suslow, T., Jacxsens, L., Uyttendaele, M., & Allende, A. (2015). Pre-
- and postharvest preventive measures and intervention strategies to control microbial food
- 533 safety hazards of fresh leafy vegetables. *Critical Reviews in Food Science and Nutrition*,
- 534 55(4), 453–468.
- 535 Gonzales, G. B., Smagghe, G., Raes, K., & Camp, J. Van. (2014). Combined alkaline hydrolysis

- 536and ultrasound-assisted extraction for the release of nonextractable phenolics from cauli537flower (*Brassica oleracea* var. *botrytis*) waste. *Journal of Agricultural and Food*
- 538 *Chemistry*, 62(15), 3371–3376.
- 539 Gupta, P. S. (2018). Roles of metals in human health. *MOJ Bioorganic & Organic Chemistry*,
 540 2(5), 221–224.
- Hammes, W. P., & Hertel, C. (2015). Lactobacillus. In W. B. Whitman, F. Rainey, P. Kämpfer,
 M. Trujillo, J. Chun, & D. DeVos (Eds.), *Bergey's Manual of Systematics of Archea and Bacteria*. New Jersey: John Wiley & Sons, Inc., in association with Bergey's Manual Trust.
 p. 1–76. ISBN: 9781118960608.
- 545
- Huynh, N. T., Smagghe, G., Gonzales, G. B., Van Camp, J., & Raes, K. (2014). Enzyme-assisted
 extraction enhancing the phenolic release from cauliflower (*Brassica oleracea* L. var.
- 548 *botrytis*) outer leaves. *Journal of Agricultural and Food Chemistry*, 62(30), 7468–7476.
- International Commission on Microbiology Specifications for Foods (ICMSF). (2011). Fruits
 and fruit products. In *Microorganisms in Foods* 8. Boston:Springer. p. 177–195.
- 551 International Organization for Standardization. (1978). Meat and meat products —
- 552 Determination of nitrogen content (Reference method) (ISO 937: 1978). Internet:
- 553 https://www.iso.org/standard/5356.html (Accessed January 3, 2022)
- 554 International Organization for Standardization. (1997). Meat and meat products —
- 555 Determination of moisture content (Reference method). (ISO standard no. 1442:1997.
- 556 Internet: https://www.iso.org/standard/6037.html (Accessed January 3, 2022)
- Jin, X., Chen, W., Chen, H., Chen, W., & Zhong, Q. (2018). Comparative evaluation of the
 antioxidant capacities and organic acid and volatile contents of mango slurries fermented
- 559 with six different probiotic microorganisms. *Journal of Food Science*, 83(12), 3059–3068.
- Kabasakalis, V., Siopidou, D., & Moshatou, E. (2000). Ascorbic acid content of commercial fruit
 juices and its rate of loss upon storage. *Food Chemistry*, 70(3), 325–328.
- Kyriacou, M. C., Leskovar, D. I., Colla, G., & Rouphael, Y. (2018). Watermelon and melon fruit
 quality: The genotypic and agro-environmental factors implicated. *Scientia Horticulturae*,
 234, 393–408.
- Liu, Y., Hu, X., Zhao, X., & Song, H. (2012). Combined effect of high pressure carbon dioxide
 and mild heat treatment on overall quality parameters of watermelon juice. *Innovative Food*

- 567 *Science and Emerging Technologies*, *13*, 112–119.
- Lozano, J. E. (2006). Fruit manufacturing Scientific basis, engineering properties, and
 deteriorative reactions of technological importance. Bahia Blanca:Spinger. ISBN-10: 0 387-30614-5
- 571 Lu, X., Sun, D., Wu, Q., Liu, S., & Sun, G. (2014). Physico-chemical properties, antioxidant
- activity and mineral contents of pineapple genotypes grown in China. *Molecules*, *19*, 8518–
 8532.
- Ma, T., Wang, J., Wang, H., Lan, T., Liu, R., Gao, T., Yang, W., Zhou, Y., Ge, Q., Fang, Y., &
 Sun, X. (2020). Is overnight fresh juice drinkable? The shelf life prediction of non-industrial
 fresh watermelon juice based on the nutritional quality, microbial safety quality, and
- 577 sensory quality. *Food and Nutrition Research*, 64(4237), 1–15.
- 578 Mandha, J., Shumoy, H., Devaere, J., Schouteten, J. J., Gellynck, X., de Winne, A., Matemy,
- 579 O.A., Raes, K. (2021). Effect of lactic acid fermentation of watermelon juice on its sensory
 580 acceptability and volatile compounds. *Food Chemistry*, *358*, 129809.
- Mgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physiochemical and
 antioxidant properties of roselle-mango juice blends; Effects of packaging material, storage
 temperature and time. *Food Science and Nutrition*, *3*(2), 100–109.
- Misran, E., Idris, A., Mat Sarip, S. H., & Ya'akob, H. (2019). Properties of bromelain extract
 from different parts of the pineapple variety Morris. *Biocatalysis and Agricultural Biotechnology*, 18, 101095.
- Ndiaye, C., Xu, S. Y., & Wang, Z. (2009). Steam blanching effect on polyphenoloxidase,
 peroxidase and colour of mango (*Mangifera indica L.*) slices. *Food Chemistry*, *113*(1), 92–
 95.
- Nielsen, S. S. (2017). Vitamin C determination by Indophenol method. In *Food Analysis Laboratory Manual*. Boston:Springer. p. 143–146.
- Olayinka, B. U., & Etejere, E. O. (2018). Proximate and chemical compositions of watermelon (
 Citrullus lanatus Thunb .) Matsum and Nakai cv Red and cucumber (*Cucumis sativus L* . cv
 Pipino). *International Food Research Journal*, 25(3), 1060–1066.
- 595 Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J. H., Chen, S., Corpe, C., Dutta,
- A., Dutta, S. K. & Levine, M. (2003). Vitamin C as an antioxidant: Evaluation of its role in
 disease prevention. *Journal of the American College of Nutrition*, 22(1), 18–35.

- 598 Perkins-Veazie, P., & Collins, J. K. (2004). Flesh quality and lycopene stability of fresh-cut
 599 watermelon. *Postharvest Biology and Technology*, *31*(2), 159–166.
- 600 Petruzzi, L., Campaniello, D., Speranza, B., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A.
- 601 (2017). Thermal treatments for fruit and vegetable juices and beverages: A literature
- 602 overview. *Comprehensive Reviews in Food Science and Food Safety*, *16*(4), 668–691.
- 603 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999).
- Antioxidant activity applying an improved Abts radical cation decolorization assay. *Free Radical Biology & Medicine*, 26(98), 1231–1237.
- Ryley, J., & Kajda, P. (1994). Vitamins in thermal processing. *Food Chemistry*, 49(2), 119–129.
- 607 Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2016). A comparative study on the effect of

608 conventional thermal pasteurisation, microwave and ultrasound treatments on the

- antioxidant activity of five fruit juices. *Food Science and Technology International*, 22(4),
 288–301.
- Sarrwy, S. M. A., Dorria, M. M. A., & Aml, R. M. Y. (2021). Thermal poststorage treatment for
 maintaining fruit quality and extending storage life of pomegranate wonderful cultivars. *Egyptian Journal of Chemistry*, 64(11), 6375–6383.
- 614 Shaheer, C. A., Hafeeda, P., Kumar, R., Kathiravan, T., Kumar, D., & Nadanasabapathi, S.
- 615 (2014). Effect of thermal and thermosonication on anthocyanin stability in jamun (*Eugenia*616 *jambolana*) fruit juice. *International Food Research Journal*, 21(6), 2189–2194.
- 617 Sharma, R., Kaur, D., Oberoi, D. P. S., & Sogi, D. S. (2008). Thermal degradation kinetics of
- 618 pigments and visual color in watermelon juice. *International Journal of Food Properties*,
 619 *11*(2), 439–449.
- 620 Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M. M., Pavan, S., & Montemurro,
- 621 C. (2017). Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects.
 622 *International Journal of Molecular Sciences*, 18(2), 377.
- Tarazona-Díaz, M. P., Martínez-Sánchez, A., & Aguayo, E. (2017). Preservation of bioactive
 compounds and quality parameters of watermelon juice enriched with L-citrulline through
 chort thermal treatment. *Journal of Food Quality*, 2017(3283054), 1–10.
- 626 Tarazona-Díaz, P. M., & Aguayo, E. (2013). Influence of acidification, pasteurization,
- 627 centrifugation and storage time and temperature on watermelon juice quality. *Journal of the*
- 628 *Science of Food and Agriculture*, *93*(15), 3863–3869.

- 629 Tchuenchieu, A., Essia Ngang, J. J., Servais, M., Dermience, M., Sado Kamdem, S., Etoa, F. X.,
- & Sindic, M. (2018). Effect of low thermal pasteurization in combination with carvacrol on
 color, antioxidant capacity, phenolic and vitamin C contents of fruit juices. *Food Science and Nutrition*, 6(4), 736–746.
- Tesfaye, T. (2017). Valorisation of mango fruit by-products: Physicochemical characterisation
 and future prospect. *Chemical and Process Engineering Research*, *50*, 22–34.
- 635 Tribst, A. A. L., Sant Ana, A. D. S., & de Massaguer, P. R. (2009). Review: Microbiological
- quality and safety of fruit juices past, present and future perspectives *Critical Reviews in Microbiology*, *35*(4), 310–339.
- Turfan, Ö., Türkyilmaz, M., Yemi, O., & Özkan, M. (2011). Anthocyanin and colour changes
 during processing of pomegranate (*Punica granatum L*.; Cv. Hicaznar) juice from sacs and
 whole fruit. *Food Chemistry*, *129*(4), 1644–1651.
- Tyl, C., & Sadler, G. D. (2017). pH and Titratable Acidity. In S. Nielsen (Ed.), *Food analysis, Food Science Text Series*. Boston: Springer. p. 389–406.
- Tzia, C., Tasios, L., Spiliotaki, T., Chranioti, C., & Giannou, V. (2015). Edible coatings and
 films to preserve quality of fresh fruits and vegetables. In T. Varzakas & C. Tzia (Eds.),

645 *Handbook of Food Processing: Preservation*. Roca Raton: CRC Press. p. 532–565.

- 646 Unluturk, S., & Atilgan, M. R. (2015). Microbial safety and shelf life of UV-C treated freshly
 647 squeezed white grape juice. *Journal of Food Science*, 80(8), M1831–M1841.
- 648 Uyttendaele, M., Loy-Hendrickx, D. A., Vermeulen, A., Jacxsens, L., Debevere, J., &
- 649 Devlieghere, F. (2018). Plant-based products. In M. Uyttendaele (Ed.), *Microbiological*
- *Guidelines : Support for Interpretation of Microbiological Test Results of Foods*. Ghent:
 Die Keure. p. 312–353.
- Vásquez-Caicedo, A. L., Schilling, S., Carle, R., & Neidhart, S. (2007). Impact of packaging and
 storage conditions on colour and β-carotene retention of pasteurised mango purée.
- *European Food Research and Technology*, 224(5), 581–590.
- 655 Wibowo, S., Buvé, C., Hendrickx, M., Van Loey, A., & Grauwet, T. (2018). Integrated science-
- based approach to study quality changes of shelf-stable food products during storage: A
- proof of concept on orange and mango juices. *Trends in Food Science and Technology*, 73,
 76–86.
- 659 Wibowo, S., Grauwet, T., Gedefa, G. B., Hendrickx, M., & Van Loey, A. (2015a). Quality

- 660 changes of pasteurised mango juice during storage. Part I: Selecting shelf-life markers by
- 661 integration of a targeted and untargeted multivariate approach. *Food Research*

662 *International*, 78, 396–409.

Wibowo, S., Grauwet, T., Gedefa, G. B., Hendrickx, M., & Van Loey, A. (2015b). Quality
changes of pasteurised mango juice during storage. Part II: Kinetic modelling of the shelf-

665 life markers. *Food Research International*, 78, 410–423.

- 666 Wulfkuehler, S., Kurfiss, L., Kammerer, D. R., Weiss, A., Schmidt, H., & Carle, R. (2013).
- Impact of different washing procedures on quality of fresh-cut iceberg lettuce (*Lactuca sativa* var. *capitata* L.) and endive (*Cichorium endivia* L.). *European Food Research and Technology*, 236(2), 229–241.
- Kianquan, S., Shi, J., Kakuda, Y., & Yueming, J. (2005). Stability of lycopene during food
 processing and storage. *Journal of Medicinal Food*, 8(4), 413–422.
- Yıkmış, S. (2020). Sensory, physicochemical, microbiological and bioactive properties of red
 watermelon juice and yellow watermelon juice after ultrasound treatment. *Journal of Food Measurement and Characterization*, 14(3), 1417–1426.
- Zaman, K. A. A., Shamsudin, R., & Adzahan, M. N. (2016). Effect of blending ratio on quality
 of fresh pineapple (*Ananas comosus L.*) and mango (*Mangifera indica L.*) juice blends.
- 677 International Food Research Journal, 23, S101–S106.

watermelon juice. Food Chemistry, 126(1), 254-260.

- Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., Ma, Y., & Zhao, X. (2011).
 Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of
- 680 681
- 682
- 002
- 683

Attribute	Watermelon	Pineapple	Mango	P value
	juice	juice	juice	
Microbial quality (log CFU/mL)				
Total plate count	5.45 ± 0.07^{b}	$4.49\pm0.11^{\text{c}}$	6.11 ± 0.10^{a}	< 0.001
Yeasts and molds	4.04 ± 0.06^{b}	4.45 ± 0.10^{a}	2.85 ± 0.20^{c}	< 0.001
Physicochemical properties				
рН	5.40 ± 0.01^{a}	$3.40\pm0.01^{\text{c}}$	3.77 ± 0.03^{b}	< 0.001
Titratable acidity (%)	$0.14\pm0.01^{\text{c}}$	1.04 ± 0.04^{a}	0.94 ± 0.02^{b}	< 0.001
Total soluble solids (°Brix)	$5.07\pm0.06^{\rm c}$	13.0 ± 0.01^{b}	13.6 ± 0.06^{a}	< 0.001
Vitamin C (mg AAE/100 mL)	$0.59\pm0.01^{\circ}$	63.7 ± 0.51^{a}	61.2 ± 0.16^{b}	< 0.001
Color				
L*	$17.2\pm0.41^{\circ}$	38.8 ± 1.63^{b}	53.9 ± 0.24^{a}	< 0.001
a*	5.34 ± 0.23^{b}	$-4.79\pm0.11^{\rm c}$	9.70 ± 0.29^{a}	< 0.001
b*	2.42 ± 0.30^{c}	$17.0 \pm 1.72^{\text{b}}$	56.4 ± 0.42^{a}	< 0.001
H°	$24.3 \pm 1.85^{\rm c}$	286 ± 1.35^{a}	80.3 ± 0.22^{b}	< 0.001
С	5.86 ± 0.33^{c}	$17.7 \pm 1.67^{\text{b}}$	57.2 ± 0.46^{a}	< 0.001
Chemical composition (g/100 ml	L)			
Moisture	92.4 ± 0.01^{a}	87.8 ± 0.37^{b}	84.6 ± 0.01^{c}	< 0.001
Protein	0.61 ± 0.01^{a}	$0.37\pm0.01^{\rm c}$	0.41 ± 0.01^{b}	< 0.001
Ash	0.25 ± 0.01^{a}	0.28 ± 0.01^{a}	0.18 ± 0.01^{a}	0.006
Minerals (mg/100 mL)				
К	72.2 ± 1.46^{b}	94.2 ± 4.93^{a}	$11.8\pm0.33^{\rm c}$	< 0.001
Na	10.1 ± 0.05^{a}	5.19 ± 1.00^{b}	8.52 ± 1.34^{a}	0.003
Ca	9.44 ± 0.32^{b}	21.5 ± 0.74^{a}	4.44 ± 0.15^{c}	< 0.001
Mg	7.99 ± 0.24^{b}	12.1 ± 0.03^{a}	4.96 ± 0.08^{c}	< 0.001
Cu	0.17 ± 0.05^{a}	0.15 ± 0.01^{a}	0.02 ± 0.01^{b}	0.002
Fe	0.57 ± 0.06^{a}	0.46 ± 0.07^{a}	0.08 ± 0.01^{b}	< 0.001
Mn	0.13 ± 0.06^{b}	0.35 ± 0.00^{a}	0.33 ± 0.01^{a}	0.001
Zn	$0.08\pm0.04^{\circ}$	$0.69\pm0.04^{\rm a}$	0.32 ± 0.06^{b}	< 0.001

1 Table 1. Quality attributes, chemical composition, and mineral content of fruit juices

2	Values expressed as means \pm standard deviations. ^{a,b,c} Different small letters within a row denotes
3	a significant difference ($p < 0.05$). $n = 2$. L* - lightness and luminosity, a* - green-red, b* - blue-
4	yellow, H° - hue angle, C – chroma.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

Attribute	Fruit juice	Control	Pasteurization time (min)					
			P1	P2.5	P5	P10	P15	
Microbial qu	ality (log CFU/mL))						
Total plate	Watermelon juice	5.45 ± 0.07^{a}	< 1 ^b	< 1 ^b	< 1 ^b	< 1 ^b	< 1 ^b	< 0.001
count	Mango juice	5.02 ± 1.08^{a}	< 1 ^b	< 1 ^b	< 1 ^b	< 1 ^b	< 1 ^b	< 0.001
Yeasts and	Watermelon juice	4.10 ± 0.02^{a}	< 1 ^b	< 1 ^b	< 1 ^b	< 1 ^b	< 1 ^b	< 0.001
molds	Mango juice	3.57 ± 0.70^a	$< 1^{b}$	$< 1^{b}$	$< 1^{b}$	$< 1^{b}$	$< 1^{b}$	< 0.001
Physicochem	ical properties							
Titratable	Watermelon juice	0.10 ± 0.05^{B}	0.15 ± 0.07^B	$0.13\pm0.00^{\text{B}}$	0.10 ± 0.04^{B}	0.12 ± 0.02^{B}	$0.15\pm0.02^{\text{B}}$	0.680
acidity (%)	Mango juice	1.07 ± 0.06^{A}	1.02 ± 0.08^{A}	$0.83\pm0.09^{\rm A}$	$0.89\pm0.08^{\rm A}$	$1.02\pm0.03^{\rm A}$	$1.00\pm0.06^{\rm A}$	0.962
рН	Watermelon juice	$5.75\pm0.01^{\rm A}$	$5.73\pm0.01^{\rm A}$	$5.74\pm0.03^{\rm A}$	$5.76\pm0.01^{\rm A}$	$5.78\pm0.01^{\rm A}$	$5.76\pm0.01^{\rm A}$	0.080
	Mango juice	3.63 ± 0.01^B	3.59 ± 0.07^B	$3.64\pm0.01^{\text{B}}$	$3.65\pm0.04^{\rm B}$	3.62 ± 0.02^{B}	$3.66\pm0.04^{\rm B}$	0.092
Total	Watermelon juice	5.50 ± 0.01^{B}	5.33 ± 0.25^{B}	5.25 ± 0.35^{B}	$5.30\pm0.42^{\rm B}$	5.55 ± 0.21^{B}	$5.65\pm0.07^{\rm B}$	0.622
soluble	Mango juice	15.0 ± 0.01^{A}	$15.5\pm0.71^{\rm A}$	16.1 ± 1.56^{A}	$15.8 \pm 1.77^{\rm A}$	$15.3\pm0.99^{\rm A}$	$15.5\pm1.63^{\rm A}$	0.962
solids								
(°Brix)								
Vitamin C (n	ng AAE/100 mL)							
	Watermelon juice	$0.59{\pm}0.01^{aB}$	$0.59{\pm}0.01^{aB}$	$0.53{\pm}0.04^{aB}$	0.21 ± 0.02^{bB}	n.d	n.d	< 0.001

25 Table 2. Effect of pasteurization time on quality attributes of watermelon and mango juice

3

	Mango juice	61.1 ±		$60.1{\pm}0.97^{aA}$		44.6 ± 1.36^{b}	39.2± 1.28 ^b	< 0.001
		0.31 ^{aA}	3.47 ^{aA}		1.80 ^{aA}			
Color	TT 7 / 1 · ·	22.6	22.1	22 C 0 20%B	22.2	00.5	an a cobeB	0.002
L*	Watermelon juice	22.6 ± 0.20^{bcB}		23.6 ± 0.39^{aB}	22.3 ± 0.04 ^{cB}	23.5 ± 0.26 ^{baB}	22.7±0.20 ^{bcB}	0.003
			0.06 ^{cB}	50.5 0.50 ^A			50 1 0 c 0 ^A	0.005
	Mango juice	52.5 ± 0.44^{A}		52.5 ± 0.62^{A}	51.9 ± 0.11^{A}	51.5 ± 1.58^{A}		0.205
a*	Watermelon juice	7.71 ± 0.20^{a}	6.12 ±	6.77 ± 0.31^{aB}	6.28 ±	6.15 ± 0.55^{b}	5.85 ± 0.18^{bB}	0.015
			0.01 ^{bB}		0.51 ^{bB}			
	Mango juice	8.81 ± 0.50	$8.73\pm0.74^{\rm A}$	$10.1\pm0.39^{\rm A}$	$9.54\pm0.04^{\rm A}$	9.39 ± 1.65	$10.3\pm0.64^{\rm A}$	0.397
b*	Watermelon juice	2.02 ±	7.81 ±	$8.47{\pm}~1.00^{aB}$	7.88 ±	8.48 ±	8.70 ± 0.93^{aB}	< 0.001
		0.04^{bB}	0.07^{aB}		0.26^{aB}	0.67^{aB}		
	Mango juice	$51.9\pm0.81^{\rm A}$	$52.9\pm0.44^{\rm A}$	$55.6\pm0.72^{\rm A}$	$55.0\pm0.48^{\rm A}$	54.2 ± 2.88^{A}	$55.3\pm0.91^{\rm A}$	0.167
h°	Watermelon juice	14.7 ±	51.9 ±	$51.3{\pm}2.03^{aB}$	51.5 ±	54.0 ±	55.9 ± 3.73^{aB}	< 0.001
		0.62 ^{bB}	0.23 ^{aB}		1.36 ^{aB}	0.28^{aB}		
	Mango juice	$80.4\pm0.39^{\rm A}$	$80.6\pm0.71^{\rm A}$	$79.7\pm0.26^{\rm A}$	$80.2\pm0.13^{\rm A}$	80.2 ± 1.18^{A}	$79.4\pm0.82^{\rm A}$	0.563
С	Watermelon juice	7.97 ±	9.92 ±	$10.9{\pm}~0.97^{aB}$	10.1 ±	10.5 ±	10.5 ± 0.66^{abB}	0.034
		0.18^{bB}	0.06^{abB}		0.52^{abB}	0.86^{abB}		
	Mango juice	$52.7\pm0.88^{\rm A}$	$53.6\pm0.56^{\rm A}$	$56.5\pm0.78^{\rm A}$	$55.8\pm0.46^{\rm A}$	$55.0\pm3.12^{\rm A}$	$56.3\pm0.78^{\rm A}$	0.173
ΔΕ	Watermelon juice	-	$6.03\pm0.01^{\rm A}$	6.60 ± 0.01	$6.07\pm0.05^{\rm A}$	6.73 ± 0.44	$6.93\pm0.86^{\rm A}$	0.541
	Mango juice	-	2.61 ± 0.26^B	3.82 ± 0.12	3.19 ± 0.38^B	2.96 ± 1.42	3.78 ± 0.38^{B}	0.429
Enzymes (U	/mL)							
PPO	Watermelon juice	0.10 ± 0.03^{a}	$0.08\pm0.00^{\rm a}$	0.03 ± 0.00^{b}	$0.02\pm0.00^{\text{b}}$	0.02 ± 0.00^{b}	0.01 ± 0.00^{b}	0.001

	Mango juice	0.08 ± 0.00	n.d	n.d	n.d	n.d	n.d			
POD	Watermelon juice	11.7 ±	7.37 ±	$= 3.47 \pm 0.00^{cA}$	2.17 ±	0.82 ±	0.65 ± 0.06^{dA}	< 0.001		
		0.61 ^{aA}	0.61 ^{bA}		0.61 ^{cA}	0.06 ^{dA}				
	Mango juice	0.22 ±	0.13	$= 0.07 \pm 0.01^{bB}$	0.03 ±	0.02 ±	0.02 ± 0.00^{bB}	0.008		
		0.06 ^{aB}	0.06 ^{bB}		0.01 ^{bB}	0.01 ^{bB}				
TPC (mg GAE/100mL)										
	Watermelon juice	$13.2\pm3.28^{\rm B}$	11.0 ± 3.28^{II}	9.07 ± 0.17^{B}	9.95 ± 0.86^B	$11.5\pm1.26^{\text{B}}$	11.8 ± 1.61^{B}	0.521		
	Mango juice	$74.8\pm0.19^{\text{A}}$	68.5 ± 14.4^{4}	66.4 ± 14.1^{A}	$65.7\pm2.38^{\rm A}$	$62.5\pm8.34^{\rm A}$	$63.5\pm3.86^{\text{A}}$	0.789		
Antioxidant	capacity									
ABTS	Watermelon juice	$4.72\pm0.37^{\text{B}}$	$10.5\pm4.73^{\rm I}$	B 11.1 ± 6.42 ^B	$8.53 \pm 1.29^{\text{B}}$	10.1 ± 4.43^{B}	13.2 ± 8.26^{B}	0.676		
μmol	Mango juice	$125\pm34.7^{\rm A}$	$157 \pm 23.2^{\text{A}}$	$134\pm35^{\rm A}$	$134\pm20.6^{\rm A}$	$131\pm37.4^{\rm A}$	$131 \pm 15.6^{\rm A}$	0.892		
TE/100mL)	TE/100mL)									
DPPH	Watermelon juice	$3.76\pm0.70^{\text{E}}$	$3.86\pm0.73^{\rm H}$	4.79 ± 0.30^{B}	$4.29\pm0.86^{\text{B}}$	3.73 ± 0.59^{B}	$4.16\pm0.52^{\rm B}$	0.584		
(mg	Mango juice	$105\pm14.2^{\rm A}$	$107\pm22.9^{\rm A}$	$106 \pm 11.0^{\rm A}$	$106 \pm 10.0^{\rm A}$	$105\pm16.7^{\rm A}$	$102\pm10.2^{\rm A}$	0.999		
TE/100mL)										

Values expressed as means \pm standard deviations within a row with different lowercase letters (a-d) indicate a significant difference (p < 0.05) across the pasteurization time according to Turkey's post hoc test and along a column (A-B) indicate a significant difference (*p* < 0.05) in the fruit juices according to Student's t-test. L* - lightness and luminosity, a* - green-red, b* - blue-yellow, H° - hue angle, C - chroma, ΔE - color difference, n.d not detected, *n* = 2. Control is unpasteurized watermelon / mango juice

Fruit juice	Storage	Control	Pasteuri	zation time (mi	n)		
	time (days)		P1	P2.5	P5	P10	P15
Microbial quality (lo	g CFU/mL)						
Total plate count							
Watermelon juice	0	5.45 ± 0.07^{d}	< 1	< 1	< 1	< 1	< 1
	2	5.76 ± 0.04^{d}	< 1	< 1	< 1	< 1	< 1
	5	$6.09\pm0.15^{\rm c}$	< 1	< 1	< 1	< 1	< 1
	9	7.65 ± 0.21^{b}	< 1	< 1	< 1	< 1	< 1
	14	8.33 ± 0.05^{a}	< 1	< 1	< 1	< 1	< 1
	P value	< 0.001	-	-	-	-	-
Mango juice	0	5.02 ± 1.08	< 1	< 1	< 1	< 1	< 1
	2	4.44 ± 0.27	< 1	< 1	< 1	< 1	< 1
	5	4.34 ± 0.57	< 1	< 1	< 1	< 1	< 1
	9	5.18 ± 1.30	< 1	< 1	< 1	< 1	< 1
	14	5.31 ± 1.14	< 1	< 1	< 1	< 1	< 1
	P value	0.782	-	-	-	-	-
Yeasts and molds							
Watermelon juice	0	4.10 ± 0.02^{c}	< 1	< 1	< 1	< 1	< 1
	2	5.92 ± 0.01^{b}	< 1	< 1	< 1	< 1	< 1
	5	6.20 ± 0.14^{b}	< 1	< 1	< 1	< 1	< 1
	9	6.99 ± 0.16^a	< 1	< 1	< 1	< 1	< 1

Table 3. Microbial quality, physicochemical properties and bioactive compounds of pasteurized and unpasteurized watermelon

31 and mango juice during cold storage

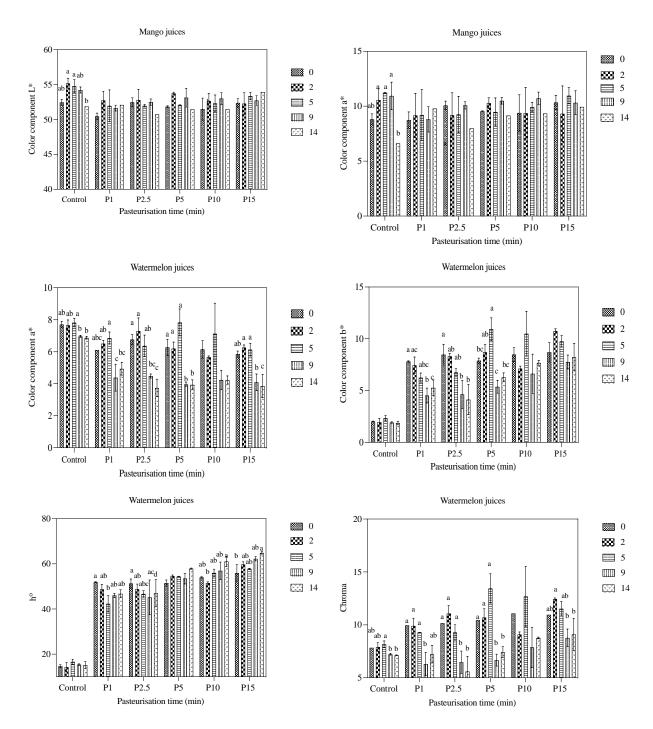
30

	14	5.96 ± 0.17^{c}	< 1	< 1	< 1	< 1	< 1
	P value	< 0.001	-	-	-	-	-
Mango juice	0	3.57 ± 0.70	< 1	< 1	< 1	< 1	< 1
	2	2.87 ± 0.24	< 1	< 1	< 1	< 1	< 1
	5	3.78 ± 0.94	< 1	< 1	< 1	< 1	< 1
	9	4.90 ± 1.38	< 1	< 1	< 1	< 1	< 1
	14	5.09 ± 1.47	< 1	< 1	< 1	< 1	< 1
	P value	0.318	-	-	-	-	-
рН							
Watermelon juice	0	5.75 ± 0.01	5.73 ± 0.01	5.74 ± 0.03	5.76 ± 0.01	5.78 ± 0.01	5.76 ± 0.01
	2	5.74 ± 0.02	5.72 ± 0.01	5.73 ± 0.03	5.73 ± 0.03	5.74 ± 0.01	5.75 ± 0.02
	5	5.73 ± 0.01	5.73 ± 0.03	5.73 ± 0.03	5.69 ± 0.01	5.73 ± 0.03	5.70 ± 0.02
	9	5.53 ± 0.19	5.72 ± 0.02	5.73 ± 0.04	5.74 ± 0.02	5.75 ± 0.01	5.74 ± 0.02
	14	5.43 ± 0.14	5.75 ± 0.01	5.76 ± 0.01	5.70 ± 0.01	5.74 ± 0.02	5.73 ± 0.01
	P value	0.205	0.626	0.589	0.112	0.539	0.167
Mango juice	0	3.63 ± 0.01	3.59 ± 0.07	3.64 ± 0.01	3.65 ± 0.04	3.62 ± 0.02	3.66 ± 0.04
	2	3.61 ± 0.01	3.64 ± 0.01	3.65 ± 0.02	3.66 ± 0.04	3.66 ± 0.04	3.66 ± 0.02
	5	3.65 ± 0.08	3.68 ± 0.06	3.66 ± 0.04	3.66 ± 0.03	3.66 ± 0.06	3.67 ± 0.04
	9	3.62 ± 0.06	3.67 ± 0.06	3.68 ± 0.05	3.66 ± 0.04	3.65 ± 0.03	3.66 ± 0.04
	14	3.60 ± 0.04	3.69 ± 0.05	3.69 ± 0.04	3.68 ± 0.06	3.66 ± 0.04	3.66 ± 0.02
	P value	0.868	0.521	0.614	0.957	0.754	0.987
Titratable acidity (%)						
Watermelon juice	0	0.10 ± 0.05^{b}	0.12 ± 0.02	0.13 ± 0.01	0.10 ± 0.04	0.12 ± 0.02	0.15 ± 0.02
	2	0.13 ± 0.01^{b}	0.13 ± 0.01	0.13 ± 0.01	0.13 ± 0.05	0.18 ± 0.02	0.15 ± 0.02
	5	0.15 ± 0.02^{b}	0.13 ± 0.01	0.15 ± 0.02	0.17 ± 0.05	0.13 ± 0.01	0.18 ± 0.02

	9	$0.14\pm0.04^{\text{b}}$	0.12 ± 0.06	0.15 ± 0.02	0.15 ± 0.02	0.17 ± 0.05	0.17 ± 0.05			
	14	0.27 ± 0.01^{a}	0.13 ± 0.01	0.13 ± 0.01	0.20 ± 0.01	0.13 ± 0.01	0.15 ± 0.02			
	P value	0.018	0.989	0.640	0.288	0.190	0.765			
Mango juice	0	1.07 ± 0.06	1.02 ± 0.08	0.83 ± 0.09	0.89 ± 0.08	1.02 ± 0.03	1.00 ± 0.06			
	2	1.02 ± 0.08	0.85 ± 0.12	0.72 ± 0.12	0.80 ± 0.14	0.92 ± 0.12	1.02 ± 0.08			
	5	1.02 ± 0.01	0.76 ± 0.16	0.87 ± 0.14	0.87 ± 0.14	0.92 ± 0.12	0.87 ± 0.14			
	9	0.95 ± 0.02	1.00 ± 0.01	0.87 ± 0.01	0.75 ± 0.02	0.75 ± 0.02	1.03 ± 0.01			
	14	0.81 ± 0.19	0.79 ± 0.07	0.95 ± 0.08	0.91 ± 0.16	1.00 ± 0.06	0.84 ± 0.19			
	P value	0.200	0.147	0.347	0.677	0.121	0.404			
Total soluble solids (°Brix)										
Watermelon juice	0	5.50 ± 0.00	5.53 ± 0.25	5.25 ± 0.35	5.30 ± 0.42	5.55 ± 0.21^{ab}	5.65 ± 0.07^{b}			
	2	5.45 ± 0.07	5.40 ± 0.01	5.25 ± 0.35	5.65 ± 0.07	5.55 ± 0.07^{ab}	5.50 ± 0.14^{b}			
	5	5.45 ± 0.07	5.40 ± 0.14	5.55 ± 0.07	5.65 ± 0.21	5.50 ± 0.14^{b}	5.65 ± 0.07^{b}			
	9	5.75 ± 0.35	5.85 ± 0.07	5.95 ± 0.07	6.00 ± 0.01	6.00 ± 001^{a}	$6.15\pm0.07^{\rm a}$			
	14	5.65 ± 0.07	5.95 ± 0.21	5.50 ± 0.71	5.95 ± 0.07	5.98 ± 0.04^{ab}	6.00 ± 0.01^{a}			
	P value	0.387	0.234	0.453	0.107	0.018	0.003			
Mango juice	0	15.0 ± 0.00^{a}	15.5 ± 0.71	16.1 ± 1.56	15.8 ± 1.77	15.3 ± 0.99	15.5 ± 1.63			
	2	15.0 ± 0.00^{a}	15.8 ± 0.35	15.2 ± 0.28	15.3 ± 0.35	15.0 ± 0.71	15.2 ± 0.57			
	5	14.7 ± 0.14^{ab}	15.5 ± 0.71	15.3 ± 0.35	15.3 ± 0.49	15.3 ± 0.35	15.1 ± 0.14			
	9	$14.6{\pm}0.49a^{b}$	15.2 ± 0.21	15.3 ± 0.64	14.9 ± 0.21	15.0 ± 0.21	15.3 ± 0.85			
	14	14.1 ± 0.07^{b}	14.6 ± 0.14	15.3 ± 0.64	15.1 ± 0.14	15.0 ± 0.01	15.0 ± 0.04			
	P value	0.042	0.291	0.780	0.862	0.950	0.984			
Vitamin C (mg/100	mL)									
Watermelon juice	0	0.59 ± 0.01	0.59 ± 0.01	0.53 ± 0.04	0.21 ± 0.02	n.d	n.d			

	2	0.47 ± 0.08	0.41 ± 0.12	0.35 ± 0.17	n.d	n.d	n.d
	5	0.59 ± 0.01	0.59 ± 0.01	0.20 ± 0.06	n.d	n.d	n.d
	9	0.60 ± 0.01	0.59 ± 0.00	0.23 ± 0.08	n.d	n.d	n.d
	14	0.59 ± 0.00	0.54 ± 0.04	n.d	n.d	n.d	n.d
	P value	0.467	0.487	0.185	< 0.001		
Mango juice	0	61.1 ± 0.31^a	63.1 ± 3.47	60.1 ± 0.97	61.3 ± 1.80	44.6 ± 1.36	39.2 ± 1.28
	2	64.9 ± 0.79^{a}	46.4 ± 0.31	42.4 ± 9.3	50.6 ± 9.07	46.1 ± 2.65	43.6 ± 7.56
	5	58.7 ± 9.62^{ac}	52.3 ± 3.62	50.8 ± 3.22	58.4 ± 1.55	48.4 ± 9.19	39.2 ± 2.98
	9	42.0 ± 1.87^{b}	56.1 ± 0.06	52.9 ± 10.7	55.5 ± 2.57	57.9 ± 0.79	40.8 ± 8.55
	14	$33.9\pm2.82^{\rm c}$	46.7 ± 9.01	49.6 ± 7.63	47.9 ± 5.15	53.5 ± 3.01	42.0 ± 3.13
	P value	0.004	0.063	0.170	0.170	0.133	0.904
TPC (GAE/100mL)							
Watermelon juice	0	13.2 ± 3.28	11.0 ± 3.28	9.07 ± 0.17	9.95 ± 0.17	11.5 ± 1.26	11.8 ± 1.61^{a}
	2	8.39 ± 0.24	7.11 ± 0.23	9.12 ± 0.04	7.01 ± 1.06	5.59 ± 0.09	6.91 ± 0.19^{b}
	5	8.42 ± 0.85	9.67 ± 0.03	11.2 ± 0.95	11.1 ± 2.54	12.8 ± 4.25	8.78 ± 1.33^{ab}
	9	9.20 ± 0.10	8.12 ± 0.35	9.10 ± 0.53	9.53 ± 0.71	8.94 ± 0.78	8.18 ± 0.09^{ab}
	14	9.75 ± 0.10	9.79 ± 0.41	9.89 ± 3.96	8.69 ± 1.36	8.68 ± 0.74	7.58 ± 1.47^{ab}
	P value	0.108	0.225	0.741	0.213	0.093	0.046
Mango juice	0	74.8 ± 0.19	68.5 ± 14.4	66.4 ± 14.1	65.7 ± 2.38	62.5 ± 8.34^{b}	63.5 ± 3.86
	2	77.1 ± 8.62	75.0 ± 11.5	83.4 ± 19.1	68.6 ± 8.66	75.3 ± 7.07^{ab}	80.9 ± 8.49
	5	73.5 ± 2.98	74.2 ± 7.60	85.0 ± 8.84	86.2 ± 12.7	108.2 ± 15.2^{a}	83.1 ± 11.2
	9	68.9 ± 9.25	80.2 ± 6.28	80.2 ± 4.76	72.4 ± 11.3	73.2 ± 7.02^{ab}	67.4 ± 6.03
	14	77.2 ± 11.4	79.3 ± 12.9	86.2 ± 3.83	87.4 ± 14.2	80.7 ± 2.27^{ab}	89.3 ± 4.91
	P value	0.809	0.827	0.506	0.270	0.026	0.069

Antioxidant capacity


DPPH (mg TE/100n	nL)						
Watermelon juice	0	3.76 ± 0.70	3.86 ± 0.73	4.79 ± 0.30^{a}	4.29 ± 0.86	3.73 ± 0.59	4.16 ± 0.52^{ab}
	2	3.93 ± 0.40	4.91 ± 0.48	4.17 ± 0.13^{ab}	3.40 ± 0.54	3.89 ± 0.04	4.50 ± 0.18^{a}
	5	3.03 ± 0.40	4.18 ± 1.88	3.21 ± 0.69^{b}	2.93 ± 0.04	2.57 ± 0.19	2.72 ± 0.32^{b}
	9	3.13 ± 1.00	2.68 ± 0.43	2.73 ± 0.18^{b}	3.24 ± 0.42	2.86 ± 0.52	2.88 ± 0.67^{ab}
	14	3.60 ± 0.49	3.53 ± 0.21	3.64 ± 0.31^{ab}	3.27 ± 0.78	3.85 ± 1.39	3.32 ± 0.18^{ab}
	P value	0.597	0.438	0.016	0.337	0.338	0.028
Mango juice	0	105 ± 14.2	107 ± 22.9	106 ± 11.0	106 ± 10.0	105 ± 16.7	102 ± 10.2
	2	104 ± 8.86	122 ± 23.9	125 ± 38.5	108 ± 12.3	115 ± 1.37	111 ± 18.7
	5	93.3 ± 7.28	106 ± 11.3	103 ± 11.7	105 ± 10.5	118 ± 30.5	103 ± 8.50
	9	95.1 ± 0.62	105 ± 9.99	107 ± 3.57	105 ± 3.69	108 ± 7.86	104 ± 1.85
	14	105 ± 6.23	99.2 ± 19.5	107 ± 14.4	105 ± 13.9	102 ± 14.7	105 ± 11.6
	P value	0.548	0.793	0.823	0.997	0.866	0.924
ABTS (µmol TE/10	0mL)						
Watermelon juice	0	4.71 ± 0.37	10.5 ± 4.73	11.1 ± 6.42	8.53 ± 1.29	10.1 ± 4.43	13.2 ± 8.26
	2	6.69 ± 3.72	9.02 ± 0.36	7.79 ± 0.84	9.30 ± 1.17	11.5 ± 0.07	10.4 ± 2.32
	5	4.63 ± 0.32	6.40 ± 0.52	7.92 ± 2.04	7.19 ± 1.68	8.57 ± 1.08	6.72 ± 2.27
	9	5.08 ± 0.01	8.09 ± 1.55	5.10 ± 1.36	7.61 ± 1.00	10.5 ± 3.28	16.2 ± 0.98
	14	8.26 ± 1.98	12.1 ± 2.79	13.4 ± 4.80	6.33 ± 0.80	6.78 ± 0.56	7.02 ± 1.30
	P value	0.149	0.344	0.335	0.289	0.467	0.230
Mango juice	0	125 ± 34.7	157 ± 23.2	135 ± 35.3	134 ± 20.6	131 ± 37.4	131 ± 15.6
	2	120 ± 29.8	155 ± 19.9	163 ± 19.4	156 ± 15.3	152 ± 24.6	156 ± 25.1
	5	129 ± 2.41	153 ± 11.4	141 ± 1.01	150 ± 18.5	169 ± 25.6	144 ± 3.67

9	127 ± 0.92	150 ± 11.6	144 ± 20.0	149 ± 6.81	152 ± 8.32	142 ± 3.69
14	154 ± 7.18	143 ± 18.6	141 ± 32.8	146 ± 23.3	153 ± 13.5	150 ± 30.4
P value	0.567	0.928	0.816	0.797	0.658	0.744

32 Values are expressed as means \pm standard deviations. ^{a,b,c} Different small letters along a column denote a significant difference (p <

33 0.05). n = 2. Control is unpasteurized watermelon / mango juice. n.d., not detected

34	Figure.1 Color change of pasteurized and unpasteurized watermelon and mango juices during
35	cold storage (days)
36	
37 38	
39	
40	
41 42	
42 43	
44	
45	
46 47	
48	
49	
50	
51 52	
52 53	
54	
55 56	
56 57	
58	
59	
60 61	
62	
63	
64	
65 66	
67	
68	
69 70	
70 71	
72	
73 74	
74 75	

76 Figure.1 Color change of pasteurized and unpasteurized watermelon and mango juices

77 during cold storage (days)

Values expressed as means and error bars represent standard deviations. ^{a,b,c,d} Different small letters denote a significant difference (p < 0.05), n=2. Control is unpasteurized watermelon / mango juice.

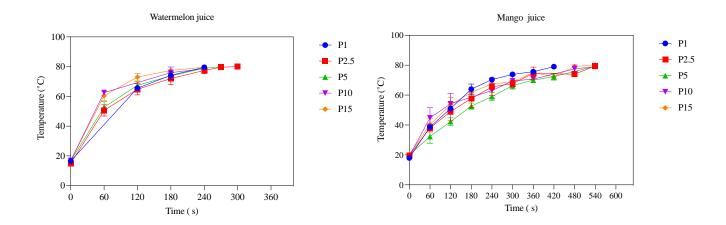

Fruit	Watermelon	l	Pineapple		Mango	
part						
	Weight (g)	% (w/w)	Weight (g)	% (w/w)	Weight (g)	% (w/w)
Juice	2072 ± 182	52.2 ± 2.14	932 ± 44.6	48.4 ± 0.67	2383 ± 23.3	70.3 ± 0.17
yield						
Peels	1655 ± 307	41.3 ± 2.21	825 ± 20.5	43.3 ± 0.41	551 ± 1.39	16.2 ± 0.10
Seeds +	213 ± 2.56	5.83 ± 1.24	-	-	-	-
pomace						
Seeds	-	-	-	-	473 ± 9.85	13.9 ± 0.19
Crown	-	-	147 ± 0.87	7.70 ± 0.31	-	-
Values are ex	pressed as me	$an \pm standard $	deviations, $n =$	2		

Table S1. Proportion of fruit parts

Pasteurization	Variable	Watermelon	Mango	P value
process		juice	juice	
Heating	Initial temperature (°C)	16.5 ± 0.8^{b}	19.5 ± 0.9^{a}	< 0.001
	Heat transfer time (s)	237 ± 26.8^{b}	486 ± 39.1^{a}	0.001
	Heating rate (°C/s)	0.55 ± 0.09^a	0.31 ± 0.03^{b}	< 0.001
Holding	Holding temperature (°C)	79.5 ± 0.2	79.2 ± 0.2	0.092
	External temp (°C)	95.1 ± 0.30	94.8 ± 0.50	0.3022
Cooling	Cooling medium temperature (°C)	0.1 ± 0.00	0.1 ± 0.00	> 1.00
	Cooling medium	ice bath	ice bath	
Values expressed	as means ± standard deviations.	^{a, b} Different small	letters within a	row denote
a significant diffe	erence ($p < 0.05$). $n = 2$			

Table S2. Pasteurization conditions of watermelon and mango juices

33 34	Figure.1 Temperature profiles of watermelon and mango juices during pasteurization
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

55 Figure.1 Temperature profiles of watermelon and mango juices during pasteurization

- 56 Values expressed as means and error bars represent standard deviations, n = 2