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ABSTRACT 

Deep learning algorithms such as AlphaFold2 predict three-dimensional protein structure with 

high confidence. The recent release of more than 200 million structural models provides an 

unprecedented resource for functional protein annotation. Here, we used AlphaFold2 predicted 

structures of fifteen plant proteomes to functionally and evolutionary analyze cysteine residues 

in the plant kingdom. In addition to identification of metal ligands coordinated by cysteine 

residues, we systematically analyzed cysteine disulfides present in these structural predictions. 

Our analysis demonstrates most of these predicted disulfides are trustworthy due their high 

agreement (~96%) with those present in X-ray and NMR protein structures, their characteristic 

disulfide stereochemistry, the biased subcellular distribution of their proteins and a higher 

degree of oxidation of their respective cysteines as measured by proteomics. Adopting an 

evolutionary perspective, zinc binding sites are increasingly present at the expense of iron-

sulfur clusters in plants. Interestingly, disulfide formation is increased in secreted proteins of 

land plants, likely promoting sequence evolution to adapt to changing environments 

encountered by plants. In summary, Alphafold2 predicted structural models are a rich source 

of information for studying the role of cysteines residues in proteins of interest and for protein 

redox biology in general. 

Keywords: AlphaFold2; Disulfides; Metal ligand; Plants; Cysteine; Redox proteomics.  
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INTRODUCTION 

Cysteine is a reactive sulfur-containing amino acid often residing in functional protein sites and 

metal binding sites. The cysteine content in proteomes is positively correlated with species 

complexity, ranging from 0.5% of all residues in prokaryotic proteins up to ~2% to 2.3% in 

higher eukaryotes [1-3]. In line with its functional importance, cysteine is one of the most 

conserved protein residues, especially in structurally buried cysteines buried cysteines and 

cysteines part of disulfides [3, 4]. Highly conserved cysteines are often part of CXXC motifs 

that facilitate enzymatic redox reactions [5] or binding of metal ligands [6, 7]. Metal ligands 

such as zinc (Zn2+) and iron-sulfur (Fe-S) clusters are mostly coordinated by cysteine and 

histidine residues [8, 9] and are often crucial to protein structure and function. Moreover, metal 

binding itself can be reversible and steer protein function dependent on the local redox 

homeostasis [10, 11]. Other dynamic redox switches of protein function are oxidative post-

translational modifications resulting from the reaction of cysteine thiols with reactive 

oxygen/nitrogen/sulfur species [12].  

Cysteine thiols also contribute to protein stability by formation of intramolecular disulfides. 

Within proteins, there are two categories of disulfides bonds [13]. The major one contains 

structural disulfides that are enzymatically catalyzed in plants via disulfide relay systems within 

the endoplasmic reticulum (ER), Golgi apparatus, the mitochondrial intermembrane space and, 

unique to plants, the thylakoid lumen of the chloroplast [14-16]. The second category entails 

functional disulfides including catalytic disulfides involved in thiol redox regulation, such as in 

thioredoxin domains, and allosteric disulfides that trigger conformational and possibly 

functional changes within a protein [17]. Next to intramolecular disulfides, cysteines can form 

intermolecular or so-called mixed disulfides between protein chains or with non-proteinaceous 

thiol compounds such as glutathione. Mixed disulfides typically occur during catalytic 

reduction reactions and redox relays or they can facilitate hydrogen peroxide dependent 

multimerization [18, 19] and even phase separation events in plants [20]. 

Despite significant advancements, proteome-wide identification of disulfide peptides with mass 

spectrometry remains challenging and would greatly benefit from more efficient enrichment 

methods [21]. Currently, systematic studies of disulfides in protein typically rely on available 

experimental structures [3, 22]. The release of AlphaFold2, however, has caused the sudden 

availability of highly accurate protein structures for entire proteomes [23, 24], recently releasing 

more than 200 million protein structures [25]. This presents now an unprecedented source to 
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structurally annotate entire proteomes. Here, we leveraged AlphaFold2 predictions to identify 

disulfides and cysteine-dependent metal binding sites in fifteen proteomes of the plant kingdom.  

MATERIAL AND METHODS 

Protein sequences, phylogeny and orthology 

Plant species diverging times were derived from TimeTree.org [26]. Small adaptations were 

the divergence of Chlamydomonas and Ostreococcus estimated at ~1,050 million years ago 

(MYA) [27] and Physcomitrium patens (moss) and Marchantia polymorpha (liverwort) at ~ 

450 MYA [28]. All protein sequences used in this study were derived from UniProtKB 

reference proteomes (Table S1). Orthology relationships were determined using the PLAZA 

integrative orthology tool [29]. 

Protein domains and subcellular localization 

Protein domains from the InterPro database [30] were retrieved via the UniProtKB protein 

annotation. N-terminal sorting signals were predicted using the stand-alone version of TargetP 

2.0 [31] using the default settings for plant proteins. For Arabidopsis thaliana, the SUBA 

database was used for subcellular protein annotation [32]. 

Comparison to annotated disulfides and metal binding sites from PDB and UniProtKB  

To benchmark disulfides from AlphaFold2 predicted structures, we compared to all available 

X-ray and NMR structures of PDB database (September 2022) for the fifteen plant species 

(Dataset S2). PDBrenum [33] was used to re-number residues in PDB structures according 

UniProtKB sequences (and thus AlphaFold2 residue numbering). Afterwards, SSBOND 

records were parsed from 2,602 PDB files. In addition, cysteines within PDB structures that 

were not part of a disulfide were kept track of in order to discern situations where AlphaFold2 

did predict a disulfide. To compare metal ligand binding predictions, we retrieved cysteines that 

coordinate metal ligands (Feature Type: Sites, ‘Binding site’) in Arabidopsis as annotated by 

UniProtKB (‘Sites’ Feature Type: ‘Binding site’; Dataset S3).  

Computational processing of protein structures 

Predicted protein structures were extracted from the online AlphaFold2 resource 

(https://alphafold.ebi.ac.uk/) and experimental structures from PDB (https://www.rcsb.org/). 

For computational processing of AlphaFold2 predicted structures we used the Biopython [34] 

PDB module to read in PDB structures and NumPy [35] to calculate geometric distances and 

https://alphafold.ebi.ac.uk/
https://www.rcsb.org/
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dihedral angles in the Python3 programming language. The DSSP algorithm was used to assign 

secondary structure and relative solvent accessibility [36]. For pKa calculation, we used the 

PropKa3.0 algorithm [37]. The average depth of cysteine residues or its sulfur atoms was 

calculated using the MSMS algorithm [38]. All protein structure visualizations were created 

using ChimeraX (version 1.14). AlphaFold2 predicted and experimental X-ray or NMR 

structures were superimposed using the built-in matchMaker algorithm using default settings. 

For the ORF8 homodimer prediction, AlphaFold-Multimer (version 2.2.2) [39] was used using 

the full sequence database and using the highest ranked structural model. Metal ligands were 

predicted using the published metal ligand search algorithm (https://github.com/Elcock-

Lab/Metalloproteome) [40]. 

Data and source code availability 

All the data generated here, together with the source code used for processing predicted protein 

structures is available at the GitHub repository https://github.com/willems533/PlantDisulfides.  

RESULTS 

The protein cysteine content increased during plant land colonization 

To explore the relative cysteine content within plant proteins, we selected fifteen plant species 

from unicellular algae to higher land plants that are representative for plant evolution and all 

have annotated UniProtKB reference proteomes (Figure 1; Table S1). These include three green 

algae, two chlorophyte algae Chlamydomonas reinhardtii and Ostreococcus tauri, as well as 

the streptophyte algae Chara braunii that serves as an excellent model system for studying plant 

adaptation to land [41]. Land plant species include the bryophytes moss (Physcomitrium patens) 

and liverwort (Marchantia polymorpha), the vascular model system Selaginella moellendorfii 

and the basal angiosperm Amborella trichopoda. In addition, we included the widely studied 

model species Arabidopsis thaliana and Populus tricochocarpa, as well as economically 

important crops such as maize, rice, tomato and soybean. Of note, we also included eelgrass 

(Zostera marina), an angiosperm that re-adjusted to a marine habitat [42]. Taken together, all 

these plant species are representative for the plant kingdom, including plant evolutionary 

adaptations to terrestrial habitats and exposure to higher atmospheric oxygen concentrations 

(Figure 1). 

The percentage of cysteine residues shows a progressive increase from ~ 1.5% in algae towards 

~ 1.9% to 2.0% in land plant proteomes over a period of approximately 1.2 billion years (Figure 

1, Table S2). Counterintuitively, Chlamydomonas and Chara present a higher number of 
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cysteines per protein due to the in general larger protein size with an average protein length of 

650 to 740 amino acids in these species (Figure S1). Next to mere cysteine content, we also 

analyzed the occurrence of the CXXC redox motif relative to the number of cysteine residues 

within each proteome (Figure 1). Despite their lower cysteine content, algae present similar 

normalized numbers of CXXC motifs compared to land plants. In all plants, cysteine is 

preferably positioned within CXXC motifs compared to CC to CX5C motifs (Figure S2). Hence, 

a gradual increase of proteome cysteine content is evident throughout plant evolution, although, 

relative to its cysteine content, CXXC redox motifs were already prominent in algae species. 

 
Figure 1. Cysteine and redox motif distribution in Viridiplantae. (Left) Timetree of fifteen plant 

species with divergence times (x-axis, million years ago [MYA]) and respective atmospheric oxygen 

concentrations (%) derived from TimeTree [26] with minor adaptations (see Methods). Plant graphics 

created with BioRender.com. (Middle) Percentage of cysteine residues in the UniProtKB reference 

proteome. (Right) Normalized occurrence of CXXC motifs. The number of motifs was divided by the 

number of cysteine residues in the proteome and multiplied by a hundred. 

Metal coordination by cysteine increases throughout plant evolution  

Next, we investigated the structural context of cysteines within 430,374 AlphaFold2 predicted 

structures for the fifteen plant proteomes (Dataset S1). Note that for approximately 3% (15,351) 

of the UniProtKB reference proteins no AlphaFold2 structures are available (e.g. due to protein 

length constraints) or lack a cysteine residue (29,795 proteins, 6.27%). First, we identified 

cysteines residing in Zn2+ and Fe-S cluster binding sites in all the predicted structures by using 

a highly specific metal ligand searching algorithm [40]. Briefly, this algorithm iterates over 

possible metal binding sites in a structure and superimpositions each Fe-S and Zn2+ ligand, 

retaining the best scoring ligand in terms of root mean square deviation and steric clashes.  
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Except for Ostreococcus (6.8%), the number of metal binding cysteines ranges between 4.5 to 

6% in algae and bryophytes, while more than 6% in angiosperms – peaking at 9.6% in 

Arabidopsis (Figure 2). In all plant species the majority (> 90%) of metal binding cysteines 

coordinate Zn2+, while the other fraction participate in Fe-S clusters. Within the latter fraction, 

cysteines are more prevalent in algae and bryophytes, in contrast to Cys2His2 Zn2+ binding sites 

that are more present in higher land plants (Figure S3). Similarly, metal binding protein domains 

such as Cys2His2 zinc finger domains are more prevalent in land plants and, oppositely, lower 

proportions of Fe-S cluster containing domains, such as the [4Fe-4S] cluster in the radical SAM 

domain [43], are more abundant in green algae (Figure S4).  

 

Figure 2. Metal coordinating cysteine motifs in plants. (A) (Left) Schematic representation indicating 

species relationships. (Middle) Percentage of cysteine residues participating in metal ligand coordination 

based on AlphaFold2 predicted protein structures using the method of [40]. (Right) Distribution of 

cysteines involved in different metal ligand binding sites. For an overview per metal ligand see Figure 

S3. (B) Cys4 Zn2+ binding site in Kluyveromyces lactis Arg-tRNA-protein transferase 1 (Ate1) (PDB 

7WG4, green) [44] and AlphaFold2 predicted structures for Chlamydomonas (UniProtKB 

A0A2K3D0B7), Selaginella (D8RCG9), and Arabidopsis (Q9ZT48) orthologs. Zn2+ ligands were 

modeled by the metal ligand searching algorithm [40]. AlphaFold2 residues were colored according the 
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per-residue confidence score (pLDDT) with > 90 being “highly confident” and < 70 being “low 

confident” predictions. 

To showcase the potential relevance of these metal binding site predictions, we turned to a 

recently discovered metal ligand binding site in the arginyl-tRNA-protein transferase (ATE), 

which is conserved in eukaryotes. Whereas binding studies using recombinant Saccharomyces 

cerevisiae Ate1 indicate the presence of Fe-S clusters [45], the crystal structure of recombinant 

Kluyveromyces lactis Ate1 (Figure 2B – Left) identified instead a Cys4 Zn2+ binding site in the 

corresponding binding pocket [44]. In the AlphaFold2 predicted structures of both yeast Ate1 

as well as their plant orthologs, we identified consistently a Cys4 Zn2+ binding site, like shown 

in Figure 2B for Chlamydomonas, Selaginella and Arabidopsis, and thus alike those reported 

for Kluyveromyces lactis. As such, AlphaFold2 predicted structures of plant proteins can be 

powerful hypothesis generators, predicting here a recently discovered metal binding site that 

might be of functional relevance to plant ATE enzymes functioning in N-degron pathways and 

oxygen sensing [46, 47]. 

A characteristic disulfide chemistry is present in AlphaFold2 predicted structures 

Disulfide bonds are on average 2.05 Å in length and within protein structures a threshold of 2.5 

Å has been used for systematic structural analysis of disulfides [22] or algorithms such as the 

pKa predictor PROPKA [48]. Applying this distance constraint of 2.5 Å, 195,439 

intramolecular disulfides were retrieved for AlphaFold2 predicted protein structures of the 

fifteen plant species (Dataset S1). Both the disulfide length (median 2.03 Å, Figure 4A) and Cα 

atom distance (median 5.52 Å, Figure S5A) matched with anticipated disulfide length of ~ 2.05 

Å and 5.6 Å, respectively [49, 50]. Moreover, the five dihedral angles (χ1, χ2, χ3, χ2′, and χ1) 

defined by the atoms underlying the disulfide bond (Figure 3B) agreed with those derived from 

experimental data (Figure S5B-D). For instance, the χ3 torsion angle (formed by Cß–Sγ–Sγ–Cß 

bonds) peaked at approximately -85° and +100° (Figure 3C), corresponding to left- and right-

handed disulfides, respectively [50-52]. Taken together, this precise disulfide stereochemistry 

highlights the accuracy of cysteine sidechain predictions by AlphaFold2, which was also 

demonstrated by the correct orientation of up to four cysteine sidechains to form metal binding 

pockets [40]. 
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Figure 3. Stereochemistry of disulfides in AlphaFold2 predicted structures. (A) Disulfide bond 

(sulfur-sulfur atom) distance for 195,439 disulfides in AlphaFold2 predicted structures (B) Ball-and-

stick model of a disulfide, indicating the five dihedral angles of a disulfide: χ1, χ2, χ3, χ2′, and χ1′. 

Carbon, nitrogen, oxygen and sulfur atoms were colored in grey, blue, red and yellow, respectively. (C) 

Histograms of χ3 dihedral angle (x-axis, binned per 5°) of disulfides in AlphaFold2 predicted structures. 

For other dihedral angels see Figure S5. 

AlphaFold2 predicted disulfides are consistent with X-ray and NMR protein structures 

To compare disulfides in AlphaFold2 predicted structures with experimental determined 

protein disulfides, we parsed 429 unique disulfides (‘SSBOND’ records) in 171 plant proteins 

using 2,602 available experimental structures deposited in the Protein Data Bank (PDB, 

https://www.rcsb.org/; Dataset S2). Notably, for 27 out of these 429 disulfides (6.3%), the 

pairing cysteines were also found as a free cysteine. Closer inspection learned that these cases 

mostly relate to small structural differences within different conformations of a protein 

(complex) or crystallization of oxidized and (semi-)reduced forms of a protein. Of the other 

cysteine pairs exclusively identified as disulfide, 387 (95.8%) were correctly predicted by 

AlphaFold2 (Figure 4A). The 17 experimental disulfides that were not present in AlphaFold2 

predicted structures included eight cases with small deviations where Cys were ~ 3 to 5 Å apart, 

for instance due to a slightly different orientation of a single cysteine sidechain (Figure 4B). 

However, we observed also six cases with different backbone predictions, often coinciding with 

lower pLDDT confidence scores. For instance, Cys337 of rice STARCH SYNTHASE1 forms 

a disulfide with Cys529 but was 9.4 Å apart due to a different backbone prediction for Cys337 

by AlphaFold2 that coincided with relatively lower confidence pLDDT scores (pLDDT < 90; 

Figure 4C). Cys337 resides within an extended loop that facilitates disulfide bond formation 

with Cys529 in rice STARCH SYNTHASE1 [53], while AlphaFold2 predicts a α-helical 

conformation in this region similar to those observed in bacterial glycogen synthases (Figure 

S6). The remaining three wrongly predicted disulfides stemmed from lower resolution NMR 

structures. Note that when only considering disulfides from experimental protein structures not 

https://www.rcsb.org/
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included in the AlphaFold2 training set (released after April 2018), 131 out of 137 disulfides 

(95.6%) were correctly assigned. 

Next, we inspected the 33 disulfides predicted by AlphaFold2 lacking experimental validation 

in the experimental structures (Dataset S2). Similar to the above cases, sixteen cysteine pairs 

are within ~ 3 to 5 Å distance, and three more distantly spaced cysteines were due to deviating 

backbone predictions. In the case of FERREDOXIN-THIOREDOXIN REDUCTASE C 

(FTRC), the Cys87-Cys117 disulfide was absent in experimental structures of FTRC in 

complex with thioredoxins (Trxs), where Cys87 formed mixed-disulfides with Trx-y1 (and Trx‐

f2, Trx‐m2) (Figure 4D) [54]. However, prior to reaction with Trx, the nucleophilic Cys87 forms 

an intramolecular disulfide with Cys117 [55], thus consolidating the AlphaFold2 prediction. 

While the Fe-S cluster of FTRC was correctly superimposed in the AlphaFold2 predicted 

structure (Figure 4D), the [2Fe-2S] clusters in Arabidopsis and maize ferredoxin were not 

identified by the metal ligand search algorithm. Instead, AlphaFold2 formed two pair of 

disulfides between metal coordinating cysteines (Figure 4E). AlphaFold2 was reported before 

to occasionally forms disulfide bonds in metal binding sites due to the cysteine proximity [40]. 

In this regard, we did identified 960 cysteines that were within a 2.5 Å distance, but that also 

identified to coordinate a metal ligand, and hence as such categorized (Dataset S1). To further 

determine whether disulfides might actually be part of non-predicted metal binding sites, we 

compared them with the 2995 cysteines in Arabidopsis proteins annotated to bind Zn2+ or Fe-S 

clusters in UniProtKB. From these, 2669 cysteines (89.1%) were correctly assigned in our study 

and 55 (1.8%) not predicted as metal binding were classified as disulfides (including 

abovementioned ferredoxins) (Dataset S3). Hence, cysteines part of metal binding sites are 

adequately assigned in this study and hardly gave rise to incorrect disulfides in our analysis. 
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Figure 4. Comparison of AlphaFold2 predicted protein disulfides with experimentally determined 

disulfides. (A) Overlap of AlphaFold2 predicted disulfides and disulfides (‘SSBOND’) from 

experimental protein structures from PDB available for the fifteen plant species. (B-E) Comparisons of 

AlphaFold2 predicted and experimental protein structures with non-matching disulfides. Iron-sulfur 

clusters were determined only experimentally (E) or also predicted by the metal ligand searching 

algorithm in the AlphaFold2 predicted structure (D). AlphaFold2 predicted proteins were colored by 

each residue’s pLDDT score, ranging from dark blue (pLDDT > 90, “very high confidence”), light blue 

(pLDDT > 70, “confident”) and low and orange indicting a “low and very confidence” prediction, 

respectively.  

Disulfide are overrepresented in secretory pathway proteins 

Next, we assessed the amount of disulfides in different subcellular compartments. Therefore, 

we first categorized the subcellular location of proteins in all plant species based on the presence 

of N-terminal sorting signals predicted by TargetP 2.0 [31], scoring the presence of a secretory 

signal peptide (SP) and mitochondrial, chloroplast and thylakoid lumenal transit peptides (mTP, 

cTP and luTP, respectively). The prediction of N-terminal sorting signals ranged between 6.7% 

(Chara) up to 25.5% (Arabidopsis) per plant proteome (Figure S7). Next, we assessed the 

proportion of cysteine residues that form disulfides according the predicted N-terminal sorting 

signals. For proteins lacking N-terminal sorting signals, 6.20% of the cysteines form disulfides, 

while merely 3.99% and 3.01% in proteins containing cTP and mTP, respectively. Conversely, 

57.8% of cysteines in proteins targeted to the secretory pathway form disulfides (with a 

predicted secretory SP), and 26.1% of those proteins targeted to the thylakoid lumen (Figure 

5A – Top). These numbers are in line with the subcellular locations for oxidative folding of 
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plant proteins [14, 15]. Disulfides have been identified in at least 30 thylakoid lumenal proteins 

[56], including VIOLAXANTHIN DE-EPOXIDASE (VDE) that contains six functionally 

important disulfide bridges [57], all of them present in the AlphaFold2 predicted with structure, 

with five of them in the N-terminal cysteine-rich domain (Figure 5C). Thus far, only a single 

disulfide, Cys231-Cys362, was identified in an experimental structure of the Arabidopsis VDE 

lipocalin protein domain (Figure 5C) [58]. In addition to the 30 reported disulfide-containing 

lumenal proteins [56], we identified thylakoid lumenal 17.9 kDa and protein nuclear-encoded 

photosystem II subunit T to contain disulfides in multiple plant species (Figure S8). While 

predicted sorting signals are a useful proxy for subcellular protein annotation of relatively less 

annotated plant species, we next relied on a more refined subcellular protein annotation for 

Arabidopsis. Based on the SUBA consensus location [32], 72.1% of cysteines residues of 

extracellular proteins form disulfides (Figure 5A – Bottom), approximately 20% in the vacuole, 

plasma membrane, and Golgi apparatus, and 15% of cysteines in proteins residing in the 

endoplasmic reticulum (ER). Conversely, proteins in the cytosol, mictochondrion, plastid, 

peroxisome and nucleus have a lower disulfide content (~2% to 4.5% of cysteines), which is in 

line with redox-sensitive biosensors based observations that demonstrate these compartments 

as reducing environments in Arabidopsis, unlike the oxidative ER [59]. 

Given the strong subcellular preference of disulfides, we next assessed the proportion of all 

cysteine residues and those that form disulfides in a subcellular context. While proteins lacking 

sorting signals show increased cysteine proportions, secreted proteins have a cysteine content 

above 2% in all species except in Chara (Figure 5C). For other compartments, like the 

chloroplast, there appears a lower cysteine content of ~1.3% in the green algae Chlamydomonas 

and Ostreoccus compared to ~1.5% in the streptophyte algae Chara and land plants. Thus, 

cysteine content in secreted proteins does not correlate with complexity of plant species. In 

contrast, other subcellular compartments display a more variable cysteine content. While for 

proteins lacking a N-terminal sorting signal there is a increased cysteine content stagnating at 

~1.9% in land plants (Figure 1), it only reaches up to ~1.6% in mitochondrial proteins (Figure 

5C). Within the land plants, there is however an increased tendency towards disulfide formation 

in secreted proteins. A trend which is not apparent in proteins residing in other subcellular 

compartments (Figure 5C; Figure S9). These disulfides in land plant proteins are often involved 

in intercellular communication, cell wall processes or defense responses that for instance 

contain disulfide-containing domains such as pectinesterase inhibitor domains, secretory 

peroxidase domains or defensin-like proteins (Figure S10). 
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Figure 5. Cysteine and disulfides are (increasingly) abundant in secreted plant proteins. (A) 

Proportion of cysteine residues forming disulfides for proteins according (i) N-terminal sorting signal 

predictions by TargetP 2.0 for all plant species (Top) [31] and (ii) SUBA4 consensus locations for 

Arabidopsis proteins (with total protein numbers between parentheses) (Bottom). (B) Comparison of 

AlphaFold2 predicted and experimental protein structure (PDB: 3CQN; [58]) for VIOLAXANTHIN 

DE-EPOXIDASE (VDE; UniProtKB Q39249). Disulfides were indicated in red. AlphaFold2 predicted 

proteins were colored by each residue’s pLDDT score, ranging from dark blue (pLDDT > 90, “very high 

confidence”), light blue (pLDDT > 70, “confident”) and low and orange indicting a “low and very 

confidence” prediction, respectively. (C) Proportion of cysteine residues (orange) and cysteine residues 

forming a disulfide in AlphaFold2 predicted structures (red) in plant proteins according N-terminal 

sorting signal predictions. For all compartments see Figure S9. Abbreviations: SP, signal peptide; TP, 

transit peptide. 
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Cysteines in disulfides and metal binding sites show a higher degree of oxidation 

 

Two recent redox proteomics studies could quantify the percentage of cysteine oxidation in 

Arabidopsis cells via differential labeling of cysteines before and after a general thiol reduction 

step (e.g. DTT/TCEP), thereby discriminatively labeling both natively reduced thiols and 

reversibly oxidized thiols, respectively. In addition to disulfides, the reversibly oxidized thiols 

include various oxidative post-translation modifications such as S-sulfenylation, S-

nitrosylation, persulfidation, and others. In the first study, iodoTMT isobaric labels were used 

to quantify rapid mitochondrial thiol reduction events reflective of seed imbibition [60]. In a 

second study, isotopic-labeled N-ethylmaleimide was used to quantify thiol oxidation changes 

in H2O2 treated leaves [61]. Next, we plotted the percentage of oxidation for cysteines 

categorized in our study to be either unbound, to be part of disulfides bonds or involved in metal 

ligand binding based on AlphaFold2 predicted structures. In isolated mitochondria, disulfide 

forming cysteines display on average 75% of oxidation, while 52 % oxidized in leaves (Figure 

6). Hence, as anticipated, cysteines part of predicted intramolecular disulfides have a higher 

degree of oxidation. In case of metal binding cysteines, increased oxidation is only noted in the 

mitochondrial study (~ 45%) [60]. This apparent discrepancy is probably due to the acidic 

protein extraction buffer used for the leaves [61], which destabilizes metal binding sites and 

hence renders cysteines susceptible for alkylation prior to the thiol reduction step. Notably, 

cysteines categorized in our analysis to be unbound yet that appear to be highly oxidized (e.g. 

> 50%) might represent cysteines forming disulfides, binding metal ligands (or other cofactors), 

or simply be very susceptible to reversible, oxidative cysteine modifications such as S-

sulfenylation, S-nitrosylation, S-glutathionylation and others. For example, Cys165 of 

MITOCHONDRIAL FERREDOXIN1 (MFDX1) was 72.5% oxidized and not predicted to be 

part of a disulfide or metal binding site based on AlphaFold2 predicted structures (Figure 6). 

However, this cysteine is known to bind a [2Fe-2S] cluster [62] and is reminiscent of the [2Fe-

2S] cluster in chloroplast ferredoxins (Figure 4E), though cysteine pairs are now ~ 3.3 Å apart. 

Taken together, quantifying the degree of cysteine oxidation can offer complementary evidence 

to functionally annotate cysteines in combination with AlphaFold2 predicted structures. 
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Figure 6. Metal binding and disulfide formation result in elevated cysteine oxidation measured by 

proteomics. The percentage of cysteine oxidation (y-axis) was plotted according cysteines annotated in 

this study as free cysteine or part of a disulfide or metal-binding sites in this study based on AlphaFold2 

predicted structures (x-axis). The degree of cysteine oxidation (%) was derived from the supplementary 

data of two independent studies in Arabidopsis [60, 61]. Only peptides containing a single cysteine and 

quantified in at least two out three replicates of the control sample were considered. For the study of 

Nietzel et al., #1 reflects the control sample for the 2-oxoglutarate treatment and #2 the control sample 

for the citrate treatment. Abbreviations: MFDX1, MITOCHONDRIAL FERREDOXIN1. 

 

DISCUSSION 

In this work we took advantage of the recent release of more than a million AlphaFold2 

predicted protein structures [25] to structurally annotate all cysteines in fifteen plant proteomes. 

For the model land plant Arabidopsis, approximately 25% (50,312 / 208,029) of all cysteines 

were predicted to either form a disulfide (14.8% Cys) or bind metal ligands (9.6% Cys). All our 

analyses suggest that AlphaFold2 predicted disulfides are highly accurate. This is supported at 

multiple levels: a strong agreement (~96%) with disulfides previously identified in X-ray and 

NMR protein structures, a characteristic disulfide stereochemistry, a higher presence in 

oxidative subcellular compartments and a high percentage of cysteine oxidation as measured 

by proteomics. 

The proportion of cysteines in a proteome positively correlates with the complexity of the 

species [1, 2]. Here, focusing on plants, a similar trend was observed with green algae (~ 1.5%), 

mosses (~ 1.7%) and higher land plants (~ 1.9%). However, this trend does not apply to the 

secreted proteins, which maintain a higher and relatively stable cysteine content of ~ 2 to 2.4%. 

In addition to a higher cysteine content, AlphaFold2 predicted structures of proteins routed via 
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the secretory pathways are rich in disulfides, in line with experimental observations [22]. These 

disulfides are critical to stabilize the protein structure in the oxidative extracellular milieu [63]. 

Moreover, the increased structural stability offered by disulfides accelerates sequence evolution 

of membrane and extracellular proteins [64] that are evolving faster than cytosolic proteins due 

to a stronger selective pressure for adaptation to changing environments [65]. In this 

perspective, the observed increase in disulfide formation in land plants likely positively 

correlates with sequence evolution of secreted proteins and thereby facilitated adaptations to 

new terrestrial habitats, such as intercellular communication, cell wall biogenesis and pathogen 

defenses.  

Using an established algorithm to search for metal ligands in AlphaFold2 predicted structures 

[40], we identified ~ 37,000 metalloproteins in fifteen selected plant species. This revealed that 

the proportion of cysteine to coordinate Zn2+ is elevated in land plant proteins, at the expense 

of Fe-S clusters that are more abundant in green algae. This phenomenon of increased Zn2+ 

binding has been observed before in eukaryotes compared to prokaryotes and has been linked 

to rising atmospheric oxygen concentrations [66, 67]. More concretely, oxygenic 

photosynthesis and consequently increased oxygen levels led to a decrease of soluble Fe2+ 

levels in oceans, opposed to transition metals such as Cu and Zn2+ that are estimated to have 

increased in concentration ~ 800 million years ago [68]. This is also reflected in the plant 

proteomes, with relatively more Fe-S clusters present in the chlorophyte algae Ostreococcus 

and Chlamydomonas that have been estimated to diverge from streptophyte algae and plants 

roughly around 725 to 1200 million years ago [68]. The freshwater streptophyte algae Chara 

presented an unusual case, with unusually high proportions of Zn2+ binding sites due to the 

presence of reverse transcriptases and nucleases that are not typically found in algae or land 

plants (Figure S4) [41]. While genomes and proteomes of other sequenced streptophyte algae 

would have been interesting to include in our analysis, e.g. Mesostigma viride and Chlorokybus 

atmophyticus [70], we solely retrieved a UniProtKB reference proteome (and AlphaFold2 

predictions) for Chara braunii. 

A current limitation of AlphaFold2 predictions is that they are monomeric and lack potential 

cofactors, interactors, or other relevant biomolecules that can adjust protein conformation in 

cellulo. However, structural predictions of multimeric protein complexes are becoming possible  

now with algorithms such as AlphaFold-Multimer [39], ColabFold [71], RoseTTAFold [72] or 

AF2Complex [73]. Intrigued by the fact that already intermolecular disulfides have been 

proposed based on of AlphaFold2 predicted structures [73, 74], we used AlphaFold-Multimer 
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to predict the structure of the SARS-CoV-2 ORF8 homodimer that contains an intermolecular 

Cys20-Cys20 disulfide (Figure S11A) [75]. Despite being described as a very challenging 

protein [23], the three intramolecular disulfides in ORF8 chains were correctly predicted and 

Cys20 of both chains were 3.329 Å apart in the AlphaFold-Multimer predicted structure (Figure 

S11A). Hence, this suggests that structural predictions can be informative to propose possible 

intermolecular disulfide linkages between proteins. Structural predictions can also be 

informative to predict or gain mechanistic insights on cofactor or ligand binding [40, 76, 77]. 

For instance, next to metal ligand binding, algorithms such as AlphaFill provide structural 

models of cysteines forming covalent bonds with cofactors such as c-type heme (e.g. 

CYTOCHROME C-1; Figure S11B) or MoO2-molybdopterin in NITRATE REDUCTASE2 

(Figure S11C). Another important consideration is that AlphaFold2 structures are static, while 

protein conformation and its disulfides can be dynamic and interchangeable (Hogg, 2020). This 

is as also evidenced by the absence or presence of disulfides in different deposited PDB 

structures of the same protein (Dataset S2). It should be noted that the AlphaFold2 per-residue 

pLDDT confidence scores in predicted structures can hint towards flexible or disordered protein 

regions [78, 79]. Moreover, such disulfide alterations, and oxidative modifications, are 

especially anticipated in conditions perturbing redox homeostasis, such as environmental 

stresses faced by plants. Despite these considerations, these available structural predictions are 

of particular interest to protein redox biology. 

In summary, AlphaFold2 predicted structures provide a compelling resource to identify 

cysteines forming disulfides and metal binding sites in proteins or whole proteomes of interest. 

This structural perspective can serve as an excellent starting point in hypothesis formulation in 

protein redox biology and future developments are bound to offer us increasingly accurate 

structural perspectives on cellular redox regulation.  
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SUPPLEMENTAL DATASETS AND CODE AVAILABILITY 

Supplemental Datasets S1-3 and the source code used for this work is available at the GitHub 

repository https://github.com/willems533/PlantDisulfides. Separate datasheets for the 

functional cysteine annotation per plant species are available. 

SUPPLEMENTAL TABLES 

Table S1. Fifteen plant species used in this study. The NCBI taxonomy identifier, UniProtKB 

reference proteome identifier and total of number of proteins per species. Proteomes were downloaded 

in September 2022. 

Species NCBI Taxonomy UniProtKB  Proteins 

Ostreococcus tauri 70448 UP000009170 7,743 

Chlamydomonas reinhardtii 3055 UP000006906 17,614 

Chara braunii 69332 UP000265515 34,644 

Marchantia polymorpha 3197 UP000244005 19,120 

Physcomitrium patens 3218 UP000006727 31,358 

Selaginella moellendorffii 88036 UP000001514 33,119 

Amborella trichopoda 13333 UP000017836 27,366 

Oryza sativa subsp. japonica 39947 UP000059680 43,673 

Zea mays 4577 UP000007305 39,207 

Zostera marina 29655 UP000036987 20,358 

Solanum lycopersicum 4081 UP000004994 34,655 

Populus trichocarpa 3694 UP000006729 42,532 

Glycine max 3847 UP000008827 55,855 

Brassica rapa subsp. pekinensis 51351 UP000011750 40,801 

Arabidopsis thaliana 3702 UP000006548 27,476 
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Table S2. Cysteine content per plant species. Number of total amino acid residues and cysteine 

residues for the plant species UniProtKB reference proteomes (see Table S1). 

Species Total residues Cysteine residues (%) 

Ostreococcus tauri 3,561,433 57,419 (1.61%) 

Chlamydomonas reinhardtii 13,015,830 172,096 (1.32%) 

Chara braunii 22,684,904 361,906 (1.60%) 

Marchantia polymorpha 7,753,135 137,091 (1.77%) 

Physcomitrium patens 11,734,425 215,926 (1.84%) 

Selaginella moellendorffii 13,317,936 253,762 (1.91%) 

Amborella trichopoda 8,595,683 163,976 (1.91%) 

Oryza sativa subsp. japonica 13,398,719 260,517 (1.94%) 

Zea mays 14,534,640 273,307 (1.88%) 

Zostera marina 7,946,007 148,617 (1.87%) 

Solanum lycopersicum 12,261,183 234,815 (1.92%) 

Populus trichocarpa 15,750,084 303,421 (1.93%) 

Glycine max 21,729,948 416,821 (1.92%) 

Brassica rapa subsp. pekinensis 15,958,951 285,707 (1.79%) 

Arabidopsis thaliana 11,124,147 207,864 (1.87%) 
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SUPPLEMENTAL FIGURES 

Figure S1. Length and cysteine content per plant species UniProtKB proteome. (Left) Schematic 

representation indicating species relationships. (Middle) Protein length distribution per species and total 

number of proteins. (Right) Number of cysteines per protein. Red dots indicate the mean.  
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Figure S2. CXXC motifs are overrepresented in plant proteomes. (Left) Schematic representation 

indicating species relationships. (Right) Normalized occurrence of CXnC motif (n = 0 to 5). The number 

of CXnC motifs was divided by the number of cysteine residues in the proteome and multiplied by a 

hundred. 
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Figure S3. Proportion of cysteines involved in coordination of specific metal ligands. Percentage of 

cysteine residues participating metal ligand coordination based on AlphaFold2 predictions using the 

metal ligand search algorithm [40].  
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Figure S4. Presence of metal binding InterPro protein domains in AlphaFold2 predicted 

metalloproteins in the plant kingdom. Proportion of metalloproteins per plant species containing a 

Cys2His2 zinc finger domain (IPR013087), DYW domain (IPR032867), radical SAM domain 

(IPR007197), integrase zinc-binding domain (InterPro IPR041588) or CCHC zinc finger domain 

(IPR001878). InterPro protein domains [30] are annotated for UniProtKB proteins in all plant species. 



25 

 

  
Figure S5. Additional disulfide geometric properties. (A) Distribution of cystine Cα- Cα length (Å). 

(B-D) Histograms of χ1, χ2, χ3, χ2′, and χ1′ dihedral angles (x-axis) of disulfides. Angles were binned 

per 5°.  
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Figure S6. Disulfides within rice STARCH SYNTHASE1 compared to bacterial glycogen 

synthase. Structural overlay of the AlphaFold2 predicted protein of rice STARCH SYNTHASE1 

(OsSS) (UniProt Q0DEV5) with experimental structures of rice STARCH SYNTHASE1 itself (green, 

PDB: 3VUF) [53], as well as the Escherichia coli glycogen synthase (EcGS) (purple, PDB: 3GUH) 

(Top). The black rectangle indicates a zoomed in region comparing the AlphaFold2 prediction to EcGS 

and OsSS experimental structures separately (Bottom). Cys337 and Cys529 that forms a disulfide bridge 

in the experimental rice structure were colored in red. While Cys337 resides in an extended loop in 

OsSS, the AlphaFold2 prediction resembles the α-helical conformation observed in EcGS. AlphaFold2 

predicted proteins were colored by each residue’s pLDDT score, ranging from dark blue (pLDDT > 90, 

“very high confidence”), light blue (pLDDT > 70, “confident”) and low and orange indicting a “low and 

very confidence” prediction, respectively. TargetP predicted N-terminal sorting signals were deleted 

from the structural model.  
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Figure S7. Predicted N-terminal sorting signals per plant proteome. (Left) Schematic representation 

indicating species relationships. (Middle) Proportion of proteins containing different targeting peptides 

as predicted by TargetP 2.0 [31]. (Right) Percentage of proteins containing a signal peptide. 

Abbreviations: cTP, chloroplast transit peptide; luTP, thylakoid lumenal transit peptide; mTP, 

mitochondrial transit peptide; noTP, no transit peptide; SP, secretory signal peptide.  
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Figure S8. Disulfides in plant thylakoid lumen proteins. AlphaFold2 predicted protein structures with 

of thylakoid lumen 17.9 kDa protein (Top) and the nuclear-encoded photosystem II subunit T (Bottom) 

in different plant species. Disulfides were colored in red. AlphaFold2 predicted proteins were colored 

by each residue’s pLDDT score, ranging from dark blue (pLDDT > 90, “very high confidence”), light 

blue (pLDDT > 70, “confident”) and low and orange indicting a “low and very confidence” prediction, 

respectively. TargetP predicted N-terminal sorting signals were deleted from the structural model.  
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Figure S9. Cysteine content and disulfide formation within subcellular compartments. Proportion 

of cysteine residues (orange) and cysteine residues forming a disulfide in AlphaFold2 predicted 

structures (red) in plant proteins according N-terminal sorting signal predictions [31]. Abbreviations: 

TP, transit peptide.  
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Figure S10. Proportion of secreted proteins (with TargetP 2.0 predicted signal peptide) with predicted 

disulfide bonds per plant species containing a pectinesterase inhibitor domain (InterPro IPR006501), 

secretory peroxidase domain (InterPro IPR033905) or belong to the plant-defensin like protein family 

(InterPro IPR010851).  
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Figure S11. Structural prediction of intermolecular disulfides and cysteine bound cofactors. (A) 

Experimental structure (PDB 7JX6; [75]) and AlphaFold2 predicted model of the SARS-CoV-2 ORF8 

homodimer. Disulfides were colored in red. (B) AlphaFold2 predicted model of CYTOCHROME C-1 

(UniProtKB O23138) with a heme c-type cofactor placed by AlphaFill [76]. (C) AlphaFold2 predicted 

model of NITRATE REDUCTASE2 (UniProtKB P11035) with a MoO2-molybdopterin cofactor placed 

by AlphaFill [76]. AlphaFold2 predicted proteins were colored by each residue’s pLDDT score, ranging 

from dark blue (pLDDT > 90, “very high confidence”), light blue (pLDDT > 70, “confident”) and low 

and orange indicting a “low and very confidence” prediction, respectively. TargetP 2.0 predicted N-

terminal sorting signals were deleted from the structural model.
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