syntenet : an R/Bioconductor package for the inference and analysis of synteny networks
- Author
- Fabricio De Almeida Silva (UGent) , Tao Zhao, Kristian K Ullrich, M Eric Schranz and Yves Van de Peer (UGent)
- Organization
- Project
- Abstract
- Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate.
- Keywords
- Computational Mathematics, Computational Theory and Mathematics, Computer Science Applications, Molecular Biology, Biochemistry, Statistics and Probability, DUPLICATIONS, EVOLUTION
Downloads
-
Almeida-Silva et al SI.pdf
- supplementary material
- |
- open access
- |
- |
- 5.24 MB
-
Almeida-Silva et al. (2023)Bioinformatics 39, btac806.pdf
- full text (Published version)
- |
- open access
- |
- |
- 312.41 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-01GP3AHHZ8VR3BTBCPA6FEXGM0
- MLA
- De Almeida Silva, Fabricio, et al. “Syntenet : An R/Bioconductor Package for the Inference and Analysis of Synteny Networks.” BIOINFORMATICS, edited by Pier Luigi Martelli, vol. 39, no. 1, 2023, doi:10.1093/bioinformatics/btac806.
- APA
- De Almeida Silva, F., Zhao, T., Ullrich, K. K., Schranz, M. E., & Van de Peer, Y. (2023). syntenet : an R/Bioconductor package for the inference and analysis of synteny networks. BIOINFORMATICS, 39(1). https://doi.org/10.1093/bioinformatics/btac806
- Chicago author-date
- De Almeida Silva, Fabricio, Tao Zhao, Kristian K Ullrich, M Eric Schranz, and Yves Van de Peer. 2023. “Syntenet : An R/Bioconductor Package for the Inference and Analysis of Synteny Networks.” Edited by Pier Luigi Martelli. BIOINFORMATICS 39 (1). https://doi.org/10.1093/bioinformatics/btac806.
- Chicago author-date (all authors)
- De Almeida Silva, Fabricio, Tao Zhao, Kristian K Ullrich, M Eric Schranz, and Yves Van de Peer. 2023. “Syntenet : An R/Bioconductor Package for the Inference and Analysis of Synteny Networks.” Ed by. Pier Luigi Martelli. BIOINFORMATICS 39 (1). doi:10.1093/bioinformatics/btac806.
- Vancouver
- 1.De Almeida Silva F, Zhao T, Ullrich KK, Schranz ME, Van de Peer Y. syntenet : an R/Bioconductor package for the inference and analysis of synteny networks. Martelli PL, editor. BIOINFORMATICS. 2023;39(1).
- IEEE
- [1]F. De Almeida Silva, T. Zhao, K. K. Ullrich, M. E. Schranz, and Y. Van de Peer, “syntenet : an R/Bioconductor package for the inference and analysis of synteny networks,” BIOINFORMATICS, vol. 39, no. 1, 2023.
@article{01GP3AHHZ8VR3BTBCPA6FEXGM0, abstract = {{Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate.}}, articleno = {{btac806}}, author = {{De Almeida Silva, Fabricio and Zhao, Tao and Ullrich, Kristian K and Schranz, M Eric and Van de Peer, Yves}}, editor = {{Martelli, Pier Luigi}}, issn = {{1367-4803}}, journal = {{BIOINFORMATICS}}, keywords = {{Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability,DUPLICATIONS,EVOLUTION}}, language = {{eng}}, number = {{1}}, pages = {{3}}, title = {{syntenet : an R/Bioconductor package for the inference and analysis of synteny networks}}, url = {{http://doi.org/10.1093/bioinformatics/btac806}}, volume = {{39}}, year = {{2023}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: