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ABSTRACT

Data on metabolic profiles of blood sampled at d 3, 
6, 9, and 21 in lactation from 117 lactations (99 cows) 
were used for unsupervised k-means clustering. Blood 
metabolic parameters included β-hydroxybutyrate 
(BHB), nonesterified fatty acids, glucose, insulin-like 
growth factor-1 (IGF-1) and insulin. Clustering relied 
on the average and range of the 5 blood parameters 
of all 4 sampling days. The clusters were labeled as 
imbalanced (n = 42) and balanced (n = 72) metabolic 
status based on the values of the blood parameters. 
Various random forest models were built to predict 
the metabolic cluster of cows during early lactation 
from the milk composition. All the models were evalu-
ated using a leave-group-out cross-validation, meaning 
data from a single cow were always present in either 
train or test data to avoid any data leakage. Features 
were either milk fatty acids (MFA) determined by gas 
chromatography (MFA [GC]) or features that could be 
determined during a routine dairy herd improvement 
(DHI) analysis, such as concentration of fat, protein, 
lactose, fat/protein ratio, urea, and somatic cell count 
(determined and reported routinely in DHI registra-
tions), either or not in combination with MFA and 
BHB determined by mid-infrared (MIR), denoted as 
MFA [MIR] and BHB [MIR], respectively, which are 
routinely analyzed but not routinely reported in DHI 
registrations yet. Models solely based on fat, protein, 
lactose, fat/protein ratio, urea and somatic cell count 
(i.e., DHI model) were characterized by the lowest pre-

dictive performance [area under the receiver operating 
characteristic curve (AUCROC) = 0.69]. The combina-
tion of the features of the DHI model with BHB [MIR] 
and MFA [MIR] powerfully increased the predictive 
performance (AUCROC = 0.81). The model based on 
the detailed MFA profile determined by GC analysis 
did not outperform (AUCROC = 0.81) the model using 
the DHI-features in combination with BHB [MIR] and 
MFA [MIR]. Predictions solely based on samples at d 
3 were characterized by lower performance (AUCROC 
DHI + BHB [MIR] + MFA [MIR] model at d 3: 0.75; 
AUCROC MFA [GC] model at d 3: 0.73). High predictive 
performance was found using samples from d 9 and 21. 
To conclude, overall, the DHI + BHB [MIR] + MFA 
[MIR] model allowed to predict metabolic status dur-
ing early lactation. Accordingly, these parameters show 
potential for routine prediction of metabolic status.
Key words: metabolic status, milk composition, 
predictive modeling, dairy cattle

INTRODUCTION

During early lactation cows commonly encounter 
negative energy balance resulting in mobilization of 
body reserves as nonesterified fatty acids (NEFA; 
Drackley, 1999). An excessive mobilization of adipose 
tissue is associated with metabolic diseases such as 
ketosis (Ospina et al., 2010). Measuring the concentra-
tion of NEFA and BHB in blood is considered as the 
gold standard to monitor the metabolic health status 
(Oetzel, 2004; LeBlanc, 2010). When body reserves 
are being mobilized, NEFA concentration in the blood 
will increase. If this NEFA concentration exceeds the 
oxidizing ability of the liver, ketone bodies (e.g., BHB) 
are formed as a result of incomplete oxidation (LeB-
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lanc, 2010). In addition to BHB and NEFA, additional 
biochemical blood indices, such as glucose, insulin, 
and IGF-1 hormones, are important when evaluating 
success or failure of homeorhetic adaptation in early 
lactation (Lucy, 2008). When single blood metabolites, 
such as BHB or NEFA, are being used for health moni-
toring, specific threshold values can be used. However, 
concomitant use of multiple biochemical blood indices 
prevents this threshold approach. Hence, unsuper-
vised learning through cluster analysis recently got 
wide attention to combine multiple blood biomarkers 
holistically (Tremblay et al., 2018; De Koster et al., 
2019; Xu et al., 2019; Foldager et al., 2020). As such, 
cows are clustered according to their metabolic health 
status based on blood sampling and determination of 
biomarkers. Afterward, this grouping based on cluster 
analysis can be targeted by predictive models. This is 
in particular of interest because under practical farming 
conditions routine blood sampling for laboratory analy-
sis is labor intensive, invasive, and expensive, hence 
limiting the application to individual animal cases or as 
herd monitoring tool. Therefore, predicting metabolic 
health status from milk parameters is of major interest. 
Such studies particularly used blood BHB or NEFA 
concentrations to diagnose metabolic health (e.g., van 
der Drift et al., 2012; Jorjong et al., 2014; Mann et al., 
2016), whereas only few more recent studies included a 
more extended set of reference blood parameters (e.g., 
De Koster et al., 2019; Xu et al., 2019). However, those 
studies do not address the effect of early milk sampling, 
which particularly should be assessed in light of early 
warning of metabolic disorders. The prediction models 
developed by Xu et al. (2019) included on-farm cow 
data, such as dry period length, parity, milk produc-
tion traits, and BW, whereas the models by De Koster 
et al. (2019) relied on different sets of milk biomark-
ers, including milk mid-infrared (MIR) wavelengths, 
metabolites, and glycans. Although milk fatty acids 
(MFA) are associated with negative energy balance 
and metabolic status (Jorjong et al., 2014; Mann et 
al., 2016), they were not included as predictors in the 
studies of De Koster et al. (2019) and Xu et al. (2019). 
Despite their physiological correlation with metabolic 
status and hence their potential to improve predictions, 
gas-chromatographic analysis of MFA hampers their in-
clusion in practical models. An accurate quantification 
of some (categories of) MFA, routinely determined us-
ing MIR spectra (Soyeurt et al., 2011), could eliminate 
this analytical obstacle. However, MIR-based fatty acid 
(FA) quantification does not cover all FA, which could 
be determined by GC and is still under development. 
Hence, it is of interest to compare the model perfor-
mances of MFA [GC]- and MFA [MIR]-based models.

Obviously, an accurate diagnosis of metabolic health 
is paramount in this kind of studies. Estimation of the 
incidence (rather than prevalence) of metabolically im-
paired health requires repeated sampling and analysis 
of the reference blood parameters, particularly during 
the first 2 wk of lactation, which is considered the main 
risk period (Benedet et al., 2019). However, the study 
by De Koster et al. (2019) is solely based on one blood 
sample during this critical period.

Currently, the frequency of milk sampling for DHI 
is too low and not adapted to measuring during the 
critical period of metabolic problems. Targeting early 
lactating cows and a modified sampling frequency could 
solve this issue. In line with this the effect of days in 
milk at sampling on the predictive performance of the 
milk-based models should be assessed. Hence, the cur-
rent research particularly focused on this early lactation 
period and responded to the current scientific gaps by 
inclusion of (1) repeated blood sampling as well as (2) 
repeated milk samplings to study potential differences 
in predictive performance based on sampling time.

In this regard, the hypothesis of this research was 
that biomarkers in milk can be used to predict the 
metabolic status in early lactation, but predictive per-
formance depends on the sampling day. Also, we hy-
pothesized predictions using MIR-based features have 
similar predictive performance compared with GC fea-
tures. Accordingly, the objective of this research was to 
build and compare different classes of models to predict 
metabolic status based on cluster analysis during early 
lactation using milk composition. Features used in the 
predictive models are either MFA determined by GC or 
routinely determinable features during a DHI analysis.

MATERIALS AND METHODS

Animals and Management

The experiment was performed at the research farm 
of ILVO (Melle, Belgium) from October 2018 until Oc-
tober 2020. The experiment (2018/329) was approved 
by the Ethics Committee of ILVO. Only multiparous 
Holstein-Friesian cows (n = 120 lactations) were moni-
tored in this study. After the experimental phase, the 
data from 3 cows were excluded because of missing data 
or death during the experiment, resulting in 117 lacta-
tions. These lactations contained data from 99 unique 
cows, from which 18 cows were monitored during 2 
lactations. Cows were studied until d 23 in lactation.

Dry cows and lactating cows were housed separately 
in a naturally ventilated freestall barn with slatted 
floor. Stocking density was always <1 cow/cubicle. 
From imminent calving (e.g., pelvic ligament relax-
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ation, teat filling) until d 3 after calving, cows were 
housed in maternity pens with straw bedding within 
the same building. In case of severe disease (reported 
cases which required intervention by veterinarian or 
farm staff), cows stayed for a longer period in these 
pens. During the trial 24 cows were diagnosed as suffer-
ing from one or multiple of the following clinical health 
issues: displaced abomasum (n = 10), hypocalcemia (n 
= 9), clinical ketosis (n = 9), uterine infection (n = 6), 
mastitis (n = 5), and other (n = 6).

From 3 wk before calving, cows received the partial 
mixed ration of the lactating cows supplemented with a 
dry cow mineral premix and on average 1 kg of balanced 
concentrate per cow per day. Belgian-Dutch energy and 
protein evaluation systems were used: protein digestible 
at the level of the small intestine requirements and sup-
ply were assessed according to the DVE-system (Van 
Duinkerken et al., 2011) and net energy requirements 
and supply according to the VEM-system (Van Es, 
1975). The partial mixed ration of the lactating cows 
was calculated for an average adult cow of 650 kg, pro-
ducing 26 kg of fat- and protein-corrected milk and was 
based on maize silage, prewilted grass silage, pressed 
beet pulp, and soybean meal to balance digestible pro-
tein (DVE)- and net energy (VEM)-requirements and 
supplemented with a VEM-DVE-balanced concentrate. 
The supply of the balanced concentrate changed ac-
cording to lactation stage and slightly changed during 
the course of the experiment (running over 2 yr) in rela-
tion to the quality and feed values of the used silages. 
Concentrate intake started at 1.7 kg of balanced con-
centrates, 0.2 kg formaldehyde-treated soybean meal 
(Covasoy Braz., FeedValid), 0.3 kg of soybean meal at 
d 3 after calving. Formaldehyde-treated soybean meal 
was increased over a period of 7 d to 1 kg, whereas 
the balanced concentrate was increased to 6 kg over a 
period of 20 d. Detailed information about the chemi-
cal composition and concentrate increment over time 
is given in Supplemental Tables S1 and S2 (https:​/​/​
doi​.org/​10​.6084/​m9​.figshare​.19626474; Heirbaut et al., 
2022). Individual feed intake was monitored through-
out the trial using roughage intake control feeding bins 
(Insentec, Hokofarm Group), except during the period 
around calving. During lactation, concentrate intake 
was monitored at the automatic concentrate providers 
(Greenfeed, C-Lock Inc.; DeLaval) and in the herring-
bone milking parlor (DeLaval). The cows had access to 
water ad libitum.

Blood and Milk Samples

Blood sampling took place at d 3 (mean ± SD; 
3.1 ± 0.28), 6 (5.9 ± 0.55), 9 (9.1 ± 0.49), and 21 

(21.0 ± 0.70) after calving using an 18-gauge needle 
and Venoject system (BD Diagnostics). Samples were 
taken from the coccygeal vessels (d 3, 6, and 9) or the 
jugular vein (d 21) in the morning between 0915 and 
0945 h (around 1.5 h after feeding). Blood was col-
lected in plasma NaF (4 mL) and serum blood tubes 
(10 mL; SSTTM II Advance tubes; BD Diagnostics). 
Serum tubes were kept at room temperature for 30 min 
before centrifuging and NaF tubes were kept cooled 
until centrifuging. The NaF tubes were centrifuged at 
1,000 × g for 10 min and serum tubes at 1,500 × g 
for 15 min at room temperature. Serum and plasma 
samples were divided into aliquots and stored at −20°C 
[analyses serum: BHB, NEFA, and insulin; analyses 
plasma (NaF): glucose] or −80°C (analysis serum: 
IGF-1). Glucose, BHB, and NEFA were analyzed using 
a Gallery Discrete Analyzer (ThermoFisher Scientific). 
The BHB was analyzed using kit RB1007 (Randox 
Laboratories Ltd.), NEFA using kit FA115 (Ran-
dox Laboratories Ltd.), and glucose with kit 981779 
(ThermoFisher Scientific) by the laboratory of Dier-
engezondheidszorg Vlaanderen (Belgium). In brief, the 
determination of BHB concentration is based on the 
oxidation of D-3-hydroxybutyrate to acetoacetate by 
the enzyme 3-hydroxybutyrate dehydrogenase. During 
this reaction NAD+ is reduced to NADH and the asso-
ciated change of absorbance, measured at 340 nm, can 
be directly correlated with the D-3-hydroxybutyrate 
concentration. The analysis of NEFA is based on the 
reaction with co-enzym A and ATP, in a reaction cata-
lyzed by acyl CoA synthetase. The formed acyl CoA is 
further oxidized in the presence of acyl CoA oxidase, 
leading to the formation of hydrogen peroxide. In the 
presence of 4-aminoantipyrine and TOOS [N-ethyl-N-
(2hydroxy-3-sulphopropyl)m-toluidine], the hydrogen 
peroxide reacts, resulting in a purple color, of which 
the absorbance is read at 540 nm. Analysis of glucose 
is based on a phosphorylation by ATP, in a reaction 
catalyzed by hexokinase. The glucose-6-phosphate 
formed is oxidized to 6-phosphogluconate by glucose-
6-phosphate dehydrogenase. In this same reaction an 
equimolar amount of NAD is reduced to NADH, with 
a resulting increase in absorbance at 340 nm. Serum 
IGF-I was analyzed by an RIA method using the 
nonextraction IGF-1 IRMA DSL-2800 (LifeSpan Bio-
sciences) by Poznań University of Life Sciences. The 
concentration of this hormone was determined with 
isotope J125 by using the automatic gamma radiation 
reader (Wizard2 2-Detector Gamma Counter, Perkin 
Elmer). In this method the peptide being determined 
is “sandwiched” between 2 antibodies. The tubes were 
coated by the first antibody. The second one [anti-
IGF-1 (J-125) reagent] was radiolabeled for detection. 
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The analytic peptide (IGF-1) present in blood serum, 
standards and controls were bound by both of the 
antibodies to form a “sandwich” complex. Unbound 
compounds were removed by decanting. The Mercodia 
bovine insulin ELISA kit (Bio-connect Diagnostics) 
was used for insulin analysis.

Dairy cows were milked twice daily, starting at 0530 
h and 1630 h in a 2 × 7 herringbone milking parlor, 
and their milk yield (kg/d) was recorded electroni-
cally. To determine milk performance, milk samples (27 
mL) were collected from the cows in a representative 
way during the morning milking, at daily basis from 
d 3 to 23 after calving. Samples were stored at 4°C 
and contained preservatives (sodium azide, maximum 
concentration 0.02% m/m and bronopol, maximum 
concentration 0.005% m/m). Milk fat, protein, lactose, 
urea, BHB, SCC, SFA, UFA, MUFA, and total C18:1 
were determined by Qlip laboratory (Zutphen, the 
Netherlands), which performed routine DHI analysis 
by means of Fourier transform infrared spectrometry 
(Milkoscan FT6000, Foss Electric). Milk fat, protein, 
lactose, and urea were determined according to ISO 
9622:2013 (ISO, 2013). The SCC was analyzed ac-
cording to ISO 13366–2:2006 (ISO, 2006). Milk BHB 
and FA were estimated based on the MIR spectra 
from in-house established equations. Previously MFA 
predictions based on similar versions of those in-house 
models by Qlip have also been used in van Gastelen 
and Dijkstra (2016) and Tremblay et al. (2019). In 
Supplemental Table S3 (https:​/​/​doi​.org/​10​.6084/​m9​
.figshare​.19626474; Heirbaut et al., 2022), a comparison 
between the FA classed predicted by MIR and analyzed 
by GC is reported for the current data set.

In addition to the analysis done by Qlip, a second 
sample, containing the same preservatives as the 
sample for DHI and stored at −20°C, was analyzed 
by GC at d 3, 6, 9, and 21 to determine the detailed 
MFA composition as described by Jing et al. (2018). 
Quantification of FA methyl esters was based on the 
conversion of peak areas to the mass proportion of FA 
by a theoretical response factor for each FA (Ackman 
and Sipos, 1964; Wolff et al., 1995).

Data Processing

Data were processed using R (R Core Team, 2020), 
version 4.0.2 and RStudio, version 1.3.959. Data read-
ing, manipulation, exploration, tabular reporting, 
and visualization were done with the packages readxl 
(v1.3.1; Wickham and Bryan, 2019), tidyverse (v1.3.1; 
Wickham et al., 2019), ggplot2 (v3.3.5; Wickham, 2016), 
Ggally (v1.5.0; Schloerke et al., 2020), skimr (v2.1.3; 
Waring et al., 2021), data.table (v1.14.0; Dowle and 
Srinivasan, 2021), and flextable (v0.6.6; Gohel, 2021).

Clustering

K-means clustering was used to cluster cows based 
on blood BHB, NEFA, glucose, insulin, and IGF-1. Due 
to the outlier sensitivity of the k-means clustering algo-
rithm a winsorizing strategy was used for IGF-1, using 
a fixed upper threshold of 250 ng/mL (96.5 percentile). 
Insulin concentrations below the detection limit were 
imputed by the minimum concentration in the data 
set. The k-means clustering was performed using the 
algorithm of Hartigan and Wong (1979). Before cluster-
ing, all variables [20 variables: 5 blood parameters × 4 
sampling points (d 3, 6, 9, and 21)] were transformed 
by taking the natural logarithm to adjust skewed dis-
tributions. Rather than using the daily blood values 
for clustering, the mean and range across the different 
sampling days were determined for each blood param-
eter to reduce the dimensionality (to 10 parameters) 
but to keep the information about the within-animal 
variation. Finally, the clustering parameters were stan-
dardized (mean zero, unit variance), because the Eu-
clidean distance is sensitive to the scale and units of the 
variables included. As such, each cow was allocated to a 
single cluster based on the 10 blood parameters. Cows 
monitored during 2 lactations were clustered separately 
for each lactation. The number of clusters was based 
on the elbow method, a visual inspection of the total 
within sum of the squares as a function of the number 
of clusters, using the package factoextra (v1.0.7; Kas-
sambara and Mundt, 2020). Clustering was done using 
the base R k-means function (R Core Team, 2020) with 
100 random start centers and a maximum number of 
iterations of 100. Afterward, clustering stability was 
assessed using a bootstrap resampling scheme with 100 
iterations and by calculating the Jaccard similarities 
of the original clusters to the clusters based on the 
bootstrapped data (package fpc; v2.2–5; Hennig, 2020). 
During clustering all lactations were considered as in-
dependent. Two different clusters were found, postclus-
tering denoted as clusters metabolically “balanced” and 
“imbalanced” cluster.

Mixed Effect Modeling

Linear mixed effect models using the package lme4 
(v1.1-26; Bates et al., 2015) were used to evaluate the 
effect of cluster on the different milk parameters. Cow 
was defined as a random effect, resulting in a compound 
symmetry structure of the model residuals. The days of 
sampling, cluster, and parity were used as fixed effects 
and forced into the models. The inclusion of the 2-way 
interaction cluster × sampling day was evaluated based 
on Akaike information criterion. The P-values were ob-
tained via Satterthwaite’s degrees of freedom method 
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using the package lmerTest (v3.1-2; Kuznetsova et al., 
2017). Packages emmeans (v1.4.7; Lenth et al., 2020) 
and multcomp (v1.4-13; Hothorn et al., 2008) were used 
for Tukey post hoc tests and calculating least squares 
means. Normality of model residuals was checked vi-
sually using Q-Q plots constructed using package car 
(v3.0-10; Fox et al., 2019). In case the assumption of 
normality was violated, variables were square root 
transformed (BHB, C12:1). Reported parameters were 
expressed as least squares means ± standard error and 
were back-transformed values if necessary.

Predictive Modeling

To compare the predictive value of the different milk 
biomarkers, different classes of models were built using 
data from d 3, 6, 9, and 21 (n = 464 observations). 
These models were trained to determine whether a cow 
is considered imbalanced or balanced based on indi-
vidual milk samples (i.e., d3, 6, 9, or 21). Reference 
classification of the balanced and imbalanced group 
was based on the k-means clustering procedure, which 
relied on the average and range of the 5 blood param-
eters of all 4 sampling days as explained before. The 
following classes of predictive models were constructed: 
(1) MFA [MIR] (MFA based on MIR: saturated, un-
saturated, monounsaturated MFA and total C18:1); 
(2) DHI (fat, protein, fat/protein ratio, lactose, urea, 
SCC); (3) DHI + BHB [MIR] (features of the DHI 
model + BHB [MIR]); (4) DHI + MFA [MIR] (features 
of the DHI model + MFA [MIR]); (5) DHI + BHB 
[MIR] + MFA [MIR] (features of the DHI model + 
BHB [MIR] + MFA [MIR]); (6) MFA [GC] model (all 
62 MFA based on GC analysis, as well as the saturated, 
unsaturated, poly-unsaturated, de novo, total C18:1, 
and odd- and branched-chain FA and the ratio cis-9 
C18:​1/​C15:​1 were included). All models also included 
parity information and day of sampling. No variable 
selection step was performed: all features were kept in 
the models.

Random forest models were constructed using the 
packages caret (v6.0–84; Kuhn et al., 2021) and ranger 
(v0.13.1; Wright and Ziegler, 2017). To increase com-
putational speed the models were trained using a local 
parallel backend using base R parallel package (R Core 
Team, 2020).

Two modeling approaches were followed. The first 
modeling approach aimed at comparing the perfor-
mance for the different types of models. For this 
purpose, a cross-validation approach with a default 
parameter tuning was performed for all models. There 
was no separate test set, because the number of avail-
able datapoints for the MFA [GC] model was limited 
(d 3, 6, 9, and 21). Models were evaluated using 10-fold 

cross-validation, 15 repeats. Folds were stratified us-
ing total C18:​1MIR concentration in the milk to ensure 
a physiologically representative data distribution for 
model training. Number of trees was set fixed at 500. 
Minimal node size was kept constant at a value of 1. 
Typically, random forests do not account for whether 
different observations are repeated measures, increas-
ing the risk of data leakage (i.e., information from the 
training data set leaking to the test set and increasing 
the predictive performance). To avoid such issues, all 
data from a single cow (repeated samplings within one 
lactation, but also multiple lactations from the same 
cow) were blocked either in the training or in the test 
data. As such, the model was always evaluated on data 
from cows which were not present during the train-
ing process. Model performance was calculated global 
across all sampling days as well as for each sampling 
day separately. For each model receiver operating 
characteristic (ROC) and precision recall (PR) curves 
were constructed and the AUC was calculated to evalu-
ate the model performance using the ROCR package 
(v1.0–11; Sing et al., 2005).

The second modeling approach was a more extended 
modeling for the DHI + BHB [MIR] + MFA [MIR] 
model, combined with the use of a separate test set 
(from the same experiment) to evaluate the model 
performance in a more robust way. MIR-data were 
available on a daily basis in the period d 3 till 23 (n 
= 2,312). Those daily data were all used as individual 
data records to train the MIR-based models. Again, 
data from a single cow were always included either in 
the training or in the test data to avoid any data leak-
age. This modeling approach concerned an extended 
parameter tuning on train data using adaptive resam-
pling of the tuning parameter grid and a total of 100 
different tuning combinations. Number of trees was set 
fixed at 500. Adaptive resampling was performed to 
tune: (1) number of variables randomly sampled as can-
didates at each split, (2) splitting rule (gini, extratrees 
and hellinger), and (3) minimal node size. Finally, the 
best performing model was selected and evaluated on 
a separate test. This approach permitted to train the 
best model and evaluate it on independent test data. 
The test set contained 20% of the balanced cows and 
20% of the imbalanced cows.

RESULTS

Summary Descriptive Data

The cows enrolled in the study had a median parity 
of 3 (range 2–7). The mean daily milk yield (d 3 to 23) 
was 36.7 ± 6.91 kg (mean ± SD), with an average fat 
content of 5.1 ± 1.33 g/100 g of milk and an average 
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protein content of 3.6 ± 0.50 g/100 g of milk. The aver-
age daily total DMI was 20.5 ± 4.18 kg.

In Supplemental Tables S4 and S5 (https:​/​/​doi​.org/​
10​.6084/​m9​.figshare​.19626474; Heirbaut et al., 2022) 
the descriptive information about the blood values and 
clinical health disorders are given respectively.

Cluster Analysis

K-means clustering resulted in 2 clusters with a high 
cluster stability (Jaccard indices after resampling with 
bootstrap scheme: 0.81 and 0.89). Based on the values 
of the blood parameters, the clusters were labeled as im-
balanced (n = 42) and balanced (n = 75). An overview 
of the blood parameters and clusters is given in Table 1. 
The imbalanced cluster was characterized by high BHB 
and NEFA and low glucose, insulin, and IGF-1 concen-
trations. At d 6, 9, and 21 the average BHB concentra-
tion exceeded 1.20 mmol/L in the imbalanced cluster, 
whereas the average BHB did not exceed this threshold 
at any of the time points in the balanced cluster. The 
imbalanced cluster was characterized by 31, 50, 64, and 
69% observations with a BHB concentration above 1.20 
mmol/L at d 3, 6, 9, and 21 respectively, whereas for 
the balanced cluster it was 0, 0, 4, and 1% respectively. 
On all postpartum sampling days, the average NEFA 
concentration was higher than 0.60 mmol/L in the im-
balanced cluster and not in the balanced cluster. The 
imbalanced cluster was characterized by 69, 71, 67, and 
64% observations with a NEFA concentration above 
0.60 mmol/L at d 3, 6, 9, and 21 respectively, whereas 
for the balanced cluster this was 32, 45, 31, and 31% 
respectively. A chi-squared contingency table test did 
not show differences in parity distribution (defined as 
parity 2, 3, and >3) across the clusters (P = 0.13). The 

imbalanced and balanced cluster contained 7 versus 3 
cases of displaced abomasum, 6 versus 3 cases of hy-
pocalcemia, 6 versus 1 case(s) of clinical ketosis (based 
on clinical observations without considering blood BHB 
concentrations), 4 versus 1 case(s) of uterine infection, 
1 versus 3 case(s) of mastitis and 3 versus 3 cases of 
other diseases/health problems (data are represented 
as disease cases, multiple disease cases for the same 
cow are possible), respectively. Generally, cows in the 
metabolically imbalanced cluster had a 2.97 higher 
relative risk (95% CI: 1.43–6.21) to develop one of the 
mentioned health problems.

Predictive Models at Days 3, 6, 9, and 21

In Figures 1 and 2 the ROC and PR curves for the 
different models predicting cows in the metabolically 
imbalanced cluster are reported. The DHI model was 
characterized by the lowest AUCROC (0.69) and AUCPR 
(0.53). The inclusion of BHB or MFA [MIR] resulted in 
important predictive improvement (DHI + BHB [MIR] 
model: AUCROC 0.79 and AUCPR 0.69; DHI + MFA 
[MIR] model: AUCROC 0.77 and AUCPR 0.65). Com-
bining BHB [MIR] as well as MFA [MIR] with DHI 
resulted in additional predictive gain (AUCROC 0.81 
and AUCPR 0.72). A model based on MFA determined 
by GC (AUCROC 0.81 and AUCPR 0.70) performed bet-
ter compared with the MFA [MIR] model (AUCROC 
0.75 and AUCPR 0.62), but did not outperform the 
model combining DHI, BHB [MIR] and MFA [MIR]. 
In the latter model the 4 most important features were: 
BHB [MIR] and the FA classes (predicted from MIR 
spectra): saturated, monounsaturated, and total C18:1 
(Figure 3). In Figure 4, the 20 most important features 
of the GC model are reported. The 5 most important 

Heirbaut et al.: MILK BIOMARKERS DURING TRANSITION PERIOD

Table 1. Summary of the blood parameters of the metabolically imbalanced (IMB) and balanced (BAL) clusters at d 3, 6, 9, and 21 in lactation 
(LSM ± SE); P-values for the fixed effects of cluster and DIM, and the possible interaction cluster × DIM, are reported as well1 

DIM   Cluster BHB2 (mmol/L) NEFA2 (mmol/L) Glucose (mmol/L) Insulin2 (ng/mL) IGF-12 (ng/mL)

3 IMB 1.02 ± 0.059* 0.71 ± 0.052 3.08 ± 0.076* 0.13 ± 0.013 71.4 ± 5.46*
BAL 0.75 ± 0.033 0.45 ± 0.027 3.31 ± 0.057 0.22 ± 0.019 106.7 ± 6.11

6 IMB 1.25 ± 0.072* 0.74 ± 0.053 3.02 ± 0.076 0.12 ± 0.012 62.2 ± 4.77*
BAL 0.81 ± 0.035 0.46 ± 0.028 3.12 ± 0.057 0.21 ± 0.018 100.1 ± 5.74

9 IMB 1.57 ± 0.091* 0.76 ± 0.055 2.60 ± 0.076* 0.11 ± 0.011 69.4 ± 4.94*
BAL 0.78 ± 0.034 0.48 ± 0.028 3.08 ± 0.057 0.20 ± 0.017 89.0 ± 5.10

21 IMB 1.58 ± 0.091* 0.74 ± 0.053 2.88 ± 0.076* 0.16 ± 0.016 57.1 ± 4.37*
BAL 0.79 ± 0.034 0.46 ± 0.028 3.23 ± 0.057 0.27 ± 0.023 97.0 ± 5.56

Fixed effects          
  Cluster P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001
  DIM P < 0.001 P = 0.788 P < 0.001 P < 0.001 P < 0.001
  Cluster × DIM P < 0.001 — P = 0.014 — P = 0.017
1Day of blood sampling and cluster were forced into the models. Two-way interaction was evaluated and omitted if P > 0.10. In case of significant 
interaction, a Tukey post hoc test was performed.
2Variables were ln-transformed.
*Significant differences (P < 0.05) at each DIM, which were tested when cluster × DIM interaction was significant.

https://doi.org/10.6084/m9.figshare.19626474
https://doi.org/10.6084/m9.figshare.19626474
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predictors were C11:0, C12:0, C14:0, C15:0, and C10:0. 
The relative variable importance of the ratio cis-9 C18:​
1/​C15:​0 and C4:0 also exceeded 50.

In Supplemental Table S6 (https:​/​/​doi​.org/​10​.6084/​
m9​.figshare​.19626474; Heirbaut et al., 2022) the milk 
composition and MFA are compared between meta-
bolically imbalanced and balanced cows. The milk BHB 
[MIR] concentration was higher in metabolically imbal-
anced cows at d 6, 9, and 21 (Tukey post hoc test P < 
0.05), but not at d 3 in lactation. Regarding FA deter-
mined by MIR, cluster had a significant effect on all the 
FA classes (P < 0.001), and there were no interaction 
effects. Concentrations of UFA, MUFA, and total C18:1 
were found in higher concentrations in metabolically 
imbalanced cows. The concentration of SFA was higher 
in the balanced cluster. In order of variable importance 
in the GC model, the 5 most important variables all 
showed a significant cluster effect (P-value cluster 
<0.001). The interaction term cluster × DIM was kept 
in all statistical models of these 5 MFA [GC] (except for 
C14:0), but all sampling points differed when perform-
ing Tukey post hoc tests, resulting in higher concentra-
tions of C11:0, C14:0, C12:0, C10:0, and C15:0 in the 
balanced cluster across all sampling days.

As opposed to the overall model performance in Fig-
ures 1 and 2, Table 2 shows the variation in model 
performance (cross-validated AUC and AUCPR) across 
the different sampling days. Generally, the predictive 
models of d 3 were characterized by a lower AUCPR 
which never exceeded 0.60. The DHI + BHB [MIR] 
+ MFA [MIR] had the best predictions at d 9 and 21. 
AUCPR values above 0.80 were found for the DHI + 
BHB [MIR] + MFA [MIR] model at d 9 and 21 and the 
GC model at d 21.

DHI + BHB [MIR] + MFA [MIR] Model, Day 3 to 23

Based on the performance of the DHI + BHB [MIR] 
+ MFA [MIR] model using data from d 3, 6, 9, and 
21 only, a second modeling with separate test set and 
adaptive resampling was performed using the full data 
set in the range d 3 to 23. Across the 10 cross-validation 
runs, 15 repeats and all different hyperparameter runs, 
the ROC curve had an AUCROC of 0.79 and the PR 
curve an AUCPR of 0.69 on training data. The predic-
tive performance for each day separately is given in 
Supplemental Table S7 (https:​/​/​doi​.org/​10​.6084/​m9​
.figshare​.19626474; Heirbaut et al., 2022). Refitting the 
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Figure 1. Receiver operating characteristic (ROC) curves and area 
under the ROC curve (values presented between brackets in the leg-
end) of different random forest prediction models predicting meta-
bolically imbalanced cows using milk composition. K-means clustering, 
based on averages and ranges of the 4 blood samplings, was used to 
determine metabolic imbalance, whereas milk models to predict imbal-
anced cows relied on features of individual milk samples (i.e., d 3, 6, 9, 
or 21). Results are based on a 10-fold leave-group-out cross-validation 
with 15 repeats, and include all the hyperparameters investigated dur-
ing the training process. Models are trained and evaluated based on 
data from d 3, 6, 9, and 21 (n = 464 observations). The following 
prediction models were evaluated: (1) DHI-based features (fat, protein, 
fat/protein ratio, lactose, urea, SCC); (2) DHI and BHB based on 
mid-infrared (MIR) spectra (DHI + BHB [MIR]); (3) DHI and milk 
fatty acids (MFA) based on MIR spectra (DHI + MFA [MIR]); (4) 
DHI, BHB [MIR] and MFA based on MIR spectra (DHI + BHB + 
MFA [MIR]); (5) MFA based on MIR spectra (MFA [MIR]); and (6) 
MFA based on GC (MFA [GC]).

Figure 2. Precision recall (PR) curves and area under the PR 
curve (values presented between brackets in the legend) of different 
random forest prediction models predicting metabolically imbalanced 
cows using milk composition. K-means clustering, based on averages 
and ranges of the 4 blood samplings, was used to determine metabolic 
imbalance, whereas milk models to predict imbalanced cows relied 
on features of individual milk samples (i.e., either d 3, 6, 9, or 21). 
Results are based on a 10-fold leave-group-out cross-validation with 
15 repeats, and include all the hyperparameters investigated during 
the training process. Models are trained and evaluated based on data 
from d 3, 6, 9, and 21 (n = 464 observations). The following predic-
tion models were evaluated: (1) DHI-based features (fat, protein, fat/
protein ratio, lactose, urea, SCC); (2) DHI and BHB based on mid-
infrared (MIR) spectra (DHI + BHB [MIR]); (3) DHI and milk fatty 
acids (MFA) based on MIR spectra (DHI + MFA [MIR]); (4) DHI, 
BHB [MIR] and MFA based on MIR spectra (DHI + BHB + MFA 
[MIR]); (5) MFA based on MIR spectra (MFA [MIR]); and (6) MFA 
based on GC (MFA [GC]).

https://doi.org/10.6084/m9.figshare.19626474
https://doi.org/10.6084/m9.figshare.19626474
https://doi.org/10.6084/m9.figshare.19626474
https://doi.org/10.6084/m9.figshare.19626474
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best model on training data resulted in an AUCROC of 
0.91 and AUCPR of 0.87. When evaluating the model 
on test data, the performance slightly decreased to an 
AUCROC of 0.90 and an AUCPR of 0.82.

DISCUSSION

Classifying dairy cows during early lactation ac-
cording to their metabolic status is often challenging 
and debatable. Traditionally, the metabolic status is 
assessed by using threshold values for BHB or NEFA 
(LeBlanc, 2010). However, as indicated by De Koster 
et al. (2019) and Xu et al. (2019), other parameters 
without previously determined thresholds (e.g., the 
hormone IGF-1) may also be important to assess the 
energy balance and metabolic status in early lactation. 
These blood parameters then can be combined in an 
unsupervised learning approach to cluster cows accord-
ing to their metabolic health status (Tremblay et al., 
2018; De Koster et al., 2019; Xu et al., 2019). In the 
current research, the metabolic clusters were based on 5 
parameters (BHB, NEFA, glucose, insulin, and IGF-1), 
which also have been used by De Koster et al. (2019) 
(except for insulin) and Xu et al. (2019).

Before performing a clustering, it is crucial to as-
sess and interpret the variation in the data set, because 
the clustering algorithm is solely a mathematical ap-
proach which groups observations based on a specific 
distance metric. Supplemental Table S4 shows there is 

substantial variation in the different blood parameters. 
Depending on the sampling day, up to 26 and 55% of 
the cows exceed the 1.2 or 0.6 mmol/L threshold for 
BHB and NEFA, respectively. Based on this substan-
tial variation, the data set is well suited for applying a 
clustering, which afterward was also compared by the 
stable results when performing a bootstrap resampling.

In our study 36% of the cows were in the imbalanced 
cluster, which is higher than in other studies (De Koster 
et al., 2019; Xu et al., 2019). Interherd differences might 
be at the origin of this difference (Benedet et al., 2019), 
although the repeated blood sampling in the current 
study also may have contributed. Indeed, this approach 
aimed to estimate the incidence of metabolically imbal-
anced cows rather than the prevalence based on a single 
or limited number of blood samples. In our study 37% 
of the cows had an elevated blood BHB concentration 
(BHB >1.2 mmol/L) at least once. Only 6.0% of the 
cows had an elevated blood BHB across all 4 samplings, 
whereas only 16.2% of the cows were characterized by 
one single elevated blood BHB event. This variation 
addresses the importance of repeated samplings (Mann 
et al., 2016; Benedet et al., 2019).

Despite these methodological differences across stud-
ies (Carrier et al., 2004; Oetzel, 2004; Brunner et al., 
2019), all report an unequal distribution of metaboli-
cally balanced versus imbalanced cows within a herd. 
Also in our study, this unequal ratio (i.e., 36% of the 
cows were in the imbalanced cluster) has been observed. 
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Figure 3. Scaled variable importance of the features in the DHI + BHB [MIR]+ MFA [MIR] model. MIR = mid-infrared; MFA = milk fatty 
acids.
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In order for the model to be trained on data with suf-
ficient variation, stratification of total C18:1 was per-
formed during cross-validation. This ensures a more 
accurate sampling compared with a random sampling. 
Standard predictive models often fail when predicting 
minority classes (i.e., imbalanced cows). However, this 
potentially low predictive performance of the minor-
ity class is not reflected in the widely used accuracy 
metric (i.e., proportion of correct predictions), because 
the accuracy of a model that predicts only the majority 
class equals the proportion of the majority class (He 
and Garcia, 2009). This challenges the construction of 
high-performance models predicting the minority class 
and tempts to focus on the prediction of the majority 
class (e.g., cows in good or average metabolic status; 
Xu et al., 2019). Obviously, this does not contribute 
to a better identification of metabolically imbalanced 
cows, whereas the (early) identification of metabolical-
ly imbalanced cows is of particular importance under 
practical farming conditions. De Koster et al. (2019) 
built prediction models, addressing metabolically bal-
anced as well as metabolically imbalanced cows. Un-
fortunately, only the accuracy metric has been used, 
which challenges direct (numeric) comparisons with 
our results. Moreover, the value of this metric is highly 
questionable with skewed class distributions as indi-
cated before (He and Garcia, 2009). Surprisingly, De 
Koster et al. (2019) found highest prediction accuracy 
for prediction of imbalanced cows. The best prediction 
model had an accuracy of 81% for imbalanced cows; 

however, the number of imbalanced cows was 19 out 
of 107, which means a naive model predicting all cows 
as balanced would already achieve an accuracy of 82%. 
This questions the precision of the prediction. The 
precision itself or data to calculate precision were not 
reported. However, Grelet et al. (2019) [study using 
data of the same experiments as reported by De Koster 
et al. (2019)], but also extended by data from heifers 
and additional herds) reported the confusion matrix of 
a partial least squares discriminant analysis, allowing 
a more detailed comparison: global accuracy was 87% 
and sensitivity 76%, but the precision was only 56%. In 
our study a sensitivity of 76% corresponded to a preci-
sion of 61%. If a higher sensitivity would be pursued, 
a precision of 56% would result in a sensitivity of 81%. 
The values in our study are somewhat higher, but still 
in a similar range, despite the differences in sampling 
days and the inclusion of heifers in the study of Grelet 
et al. (2019). Low precision has been observed in the 
study of Mann et al. (2016), using a cis-9 C18:1 to 
C15:0 ratio of ≥45.0 [as proposed by Jorjong et al. 
(2015)] for detection of hyperketonemia, which resulted 
in a sensitivity, specificity, and accuracy of respectively 
84.0, 63.2, and 69.5%. However, the precision was only 
50.0%. Accordingly, only half of the cows predicted 
with elevated blood NEFA concentrations effectively 
experienced this metabolic status, whereas the other 
half were incorrectly alerted. As discussed by He and 
Garcia (2009) the use of alternative metrics such as 
precision could be beneficial in situations with an un-
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Figure 4. Scaled variable importance of the 20 most important features in the MFA [GC] model. MFA = milk fatty acids.
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equal class distribution. Indeed, from a practical point 
of view, not only the proportion of imbalanced cows 
identified by a model (i.e., sensitivity) is of importance, 
but also the precision [i.e., true positives/(true posi-
tives + false positives)]. Obviously, reliable and practi-
cally applicable predictions require a limited number of 
false positives. It has been shown that a model which 
generates a (too) high number of positives can impair 
the correct follow-up by dairy farmers (Eckelkamp and 
Bewley, 2020). From this point of view external model 
validation is very important before models could be 
implemented in practice. The models in our study were 
solely evaluated on data from a single farm and hence 
require further validation.

The MFA [GC] model highlighted the predictive 
power of some minor FA, such as C11:0 and C15:0. 

Given their low prediction accuracy by MIR, these MFA 
were not included in the DHI + BHB [MIR] + MFA 
[MIR] model. Indeed, accurate FA predictions based on 
MIR are generally lacking for FA at low concentrations 
(Rutten et al., 2009; Soyeurt et al., 2011). Rutten et 
al. (2009) suggested a minimum FA concentration of 
2.45 g/100 g of FA for obtaining a R2 of minimum 
0.6 or higher. Nevertheless, despite their physiological 
relevance (Vlaeminck et al., 2006; Dorea et al., 2017) 
and high variable importance in the MFA [GC] model, 
the inclusion of these MFA did not seem necessary to 
accurately predict metabolic status by the DHI + BHB 
[MIR] + MFA [MIR] model. As opposed to the study 
of De Koster et al. (2019) the DHI + BHB [MIR] + 
MFA [MIR] model did not use the raw MIR spectra, 
but the FA classes predicted based on MIR. Although 
this could be considered an unnecessary intermediate 
step, it should be realized that the use of MIR-data 
in predictive models require dimension reduction. As 
such the use of MIR-based FA predictions could be 
considered as a preprocessing step to reduce the num-
ber of parameters, which may be of particular interest 
because the number of observations is often limited in 
this type of animal studies with transition animals and 
relying on blood-based reference metabolites.

Because DIM and often also parity affect the mea-
sured milk parameters, the construction of a model 
seems more appropriate than using single threshold 
values to capture these additional factors of variation. 
Regarding early warning predictions, further research 
focusing on the construction of specific models target-
ing this period and possible incorporation of additional 
data sources could be of interest (e.g., sensor data, data 
of dry period), because the predictions of the model 
performed at d 3 in lactation were generally character-
ized by lower predictive performance compared with 
the other days. De Koster et al. (2019) and Xu et al. 
(2019) did not focus on this early period. Based on 
our results early prediction of metabolic status using 
milk data should not be (solely) based on samples 
from d 3 in lactation. The lower BHB concentrations 
in the beginning of the lactation could be at the origin 
of this lower performance, only 11.1% of the samples 
was characterized by an elevated BHB concentration 
at d 3. In line with these results, Mann et al. (2016) 
showed FA in colostrum could not be used to predict 
elevated BHB and NEFA concentrations during the 
first 2 wk of lactation. Therefore, they recommended 
to target the period between 3 and 14 DIM for further 
studies. Important features in our models generally 
agree with the relevant milk biomarkers reported in 
literature. In line with Mann et al. (2016), several de 
novo synthesized FA (in order of importance: C14:0, 
C12:0, and C10:0) showed high variable importance. 
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Table 2. Area under the receiver operating characteristic curve 
(AUCROC) and area under the precision recall curve (AUCPR) for d 3, 
6, 9, and 21 in lactation of different random forest models predicting 
metabolically imbalanced cows using milk composition1 

Model features2 AUCROC AUCPR DIM

DHI 0.70 0.53 3
DHI + BHB [MIR] 0.70 0.53 3
DHI + MFA [MIR] 0.75 0.58 3
DHI + BHB [MIR]+ MFA [MIR] 0.75 0.58 3
MFA [MIR] 0.72 0.57 3
MFA [GC] 0.73 0.56 3
DHI 0.67 0.54 6
DHI + BHB [MIR] 0.79 0.75 6
DHI + MFA [MIR] 0.76 0.61 6
DHI + BHB [MIR]+ MFA [MIR] 0.81 0.69 6
MFA [MIR] 0.75 0.59 6
MFA [GC] 0.79 0.66 6
DHI 0.66 0.52 9
DHI + BHB [MIR] 0.83 0.75 9
DHI + MFA [MIR] 0.79 0.71 9
DHI + BHB [MIR]+ MFA [MIR] 0.85 0.81 9
MFA [MIR] 0.78 0.71 9
MFA [GC] 0.84 0.77 9
DHI 0.71 0.54 21
DHI + BHB [MIR] 0.81 0.74 21
DHI + MFA [MIR] 0.80 0.72 21
DHI + BHB [MIR]+ MFA [MIR] 0.85 0.80 21
MFA [MIR] 0.74 0.64 21
MFA [GC] 0.88 0.83 21
1K-means clustering, based on averages and ranges of the 4 blood 
samplings, was used to determine metabolic imbalance, whereas milk 
models to predict imbalanced cows relied on features of individual milk 
samples (i.e., either d 3, 6, 9, or 21).
2The following prediction models were evaluated: (1) DHI-based fea-
tures (fat, protein, fat/protein ratio, lactose, urea, SCC); (2) DHI and 
milk BHB based on mid-infrared (MIR) spectra (DHI + BHB); (3) 
DHI and milk fatty acids (MFA) based on MIR spectra (DHI + MFA 
[MIR]); (4) DHI, BHB, and MFA based on MIR spectra (DHI + BHB 
+ MFA [MIR]); (5) MFA based on MIR spectra (MFA [MIR]); and (6) 
MFA based on GC (MFA [GC]). Results are based on a 10-fold leave-
group-out cross-validation with 15 repeats, and include different model 
hyperparameters using a limited grid search of 6 combinations (i.e., 
number of variables sampled as candidates at each split and splitting 
rule) investigated during the training process. Models are trained and 
evaluated based on data from d 3, 6, 9, and 21 (n = 464 observations).
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Indeed, imbalanced cows were characterized by lower 
de novo FA concentrations. As discussed in Craninx et 
al. (2008) increased concentrations of long-chain MFA 
as a result of body mobilization concomitantly result 
in lower concentration of de novo MFA. In addition, 
C15:0 and the ratio cis-9 C18:​1/​C15:​0 were identified 
as important predictors (cf. Jorjong et al., 2015; Mann 
et al., 2016). Interestingly, in our study, the odd short-
chain FA C11:0 had the highest importance in the MFA 
[GC] model. In line with our results, Dórea et al. (2017) 
found high sensitivity for odd short-chain FA (e.g., 
C11:0, to detect elevated NEFA concentrations). C11:0, 
such as other odd-chain FA, requires propionyl-CoA as 
precursor (Fievez et al., 2012). A higher availability of 
propionate in the rumen might therefore have resulted 
in the higher odd-chain FA observed in the balanced 
cluster.

CONCLUSIONS

Both the DHI + BHB [MIR] + MFA [MIR] model 
and the MFA [GC] model accurately predict metabolic 
status during early lactation. As such, GC analysis is 
not required, which extends the opportunity to rou-
tinely screen the metabolic status. Nevertheless, the 
predictive performance varies considerably across sam-
pling days, with models solely based on data from d 
3 in milk resulting in low reliability. Considering this 
trade-off between predictive performance and early 
sampling, predictions could be performed on data from 
d 6 onwards. Therefore, the use of early milk samplings 
should be further investigated together with the possi-
ble incorporation of additional data sources to improve 
early warning predictions. Finally, before application 
in practice, additional data from different farms should 
be added and evaluated to make the model robust to 
differences in management and rations.
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