
A 2 MS/s full bandwidth hall system with low offset enabled by randomized spinning
- Author
- Robbe Riem, Johan Raman (UGent) and Pieter Rombouts (UGent)
- Organization
- Abstract
- In this paper, a Hall plate readout with a randomized four-phase spinning-current scheme is proposed. The goal is to remove the maximum number of offset components, including the offset associated with spike demodulation. The outcome is that only the smallest possible offset remains, corresponding to the residual offset of the Hall plate which cannot be distinguished from the Hall signal. An additional innovation is to operate various offset-reduction loops in spread-spectrum mode, allowing the removal of error components without notching out any in-band signals. The resulting approach delivers a very large notch-free bandwidth while simultaneously reducing the Hall plate residual offset, making it an enabler for high-bandwidth Hall-based current sensors. To demonstrate the proposed techniques, we have realized a mixed-mode experimental circuit, where the analog part is implemented in a custom integrated circuit, and the digital control system in an FPGA is connected to the analog chip. Measurement results feature a Hall readout system with a notch-free bandwidth up to 820 kHz and a 47 mu Trms noise floor. The input-referred Hall plate offset, based on statistical measurements on 10 samples from a single wafer, is reduced from 130 +/- 22 mu T to only 23 +/- 22 mu T.
- Keywords
- Hall plate, current spinning, ILSA, randomized spinning, offset, spread-spectrum offset reduction loop (SS-ORL), INSTRUMENTATION AMPLIFIER, SENSOR MICROSYSTEM, FRONT-END, REDUCTION
Downloads
-
sensors-22-06069-v2.pdf
- full text (Published version)
- |
- open access
- |
- |
- 9.34 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-01GJDHT4RDE53NFJWBW44DWPKV
- MLA
- Riem, Robbe, et al. “A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning.” SENSORS, vol. 22, no. 16, 2022, doi:10.3390/s22166069.
- APA
- Riem, R., Raman, J., & Rombouts, P. (2022). A 2 MS/s full bandwidth hall system with low offset enabled by randomized spinning. SENSORS, 22(16). https://doi.org/10.3390/s22166069
- Chicago author-date
- Riem, Robbe, Johan Raman, and Pieter Rombouts. 2022. “A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning.” SENSORS 22 (16). https://doi.org/10.3390/s22166069.
- Chicago author-date (all authors)
- Riem, Robbe, Johan Raman, and Pieter Rombouts. 2022. “A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning.” SENSORS 22 (16). doi:10.3390/s22166069.
- Vancouver
- 1.Riem R, Raman J, Rombouts P. A 2 MS/s full bandwidth hall system with low offset enabled by randomized spinning. SENSORS. 2022;22(16).
- IEEE
- [1]R. Riem, J. Raman, and P. Rombouts, “A 2 MS/s full bandwidth hall system with low offset enabled by randomized spinning,” SENSORS, vol. 22, no. 16, 2022.
@article{01GJDHT4RDE53NFJWBW44DWPKV, abstract = {{In this paper, a Hall plate readout with a randomized four-phase spinning-current scheme is proposed. The goal is to remove the maximum number of offset components, including the offset associated with spike demodulation. The outcome is that only the smallest possible offset remains, corresponding to the residual offset of the Hall plate which cannot be distinguished from the Hall signal. An additional innovation is to operate various offset-reduction loops in spread-spectrum mode, allowing the removal of error components without notching out any in-band signals. The resulting approach delivers a very large notch-free bandwidth while simultaneously reducing the Hall plate residual offset, making it an enabler for high-bandwidth Hall-based current sensors. To demonstrate the proposed techniques, we have realized a mixed-mode experimental circuit, where the analog part is implemented in a custom integrated circuit, and the digital control system in an FPGA is connected to the analog chip. Measurement results feature a Hall readout system with a notch-free bandwidth up to 820 kHz and a 47 mu Trms noise floor. The input-referred Hall plate offset, based on statistical measurements on 10 samples from a single wafer, is reduced from 130 +/- 22 mu T to only 23 +/- 22 mu T.}}, articleno = {{6069}}, author = {{Riem, Robbe and Raman, Johan and Rombouts, Pieter}}, issn = {{1424-8220}}, journal = {{SENSORS}}, keywords = {{Hall plate,current spinning,ILSA,randomized spinning,offset,spread-spectrum offset reduction loop (SS-ORL),INSTRUMENTATION AMPLIFIER,SENSOR MICROSYSTEM,FRONT-END,REDUCTION}}, language = {{eng}}, number = {{16}}, pages = {{24}}, title = {{A 2 MS/s full bandwidth hall system with low offset enabled by randomized spinning}}, url = {{http://doi.org/10.3390/s22166069}}, volume = {{22}}, year = {{2022}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: