dr. David Van Hamme
- Work address
-
Sint-Pietersnieuwstraat 41
9000 Gent - David.VanHamme@UGent.be
- ORCID iD
-
0000-0003-2112-3475
Show
Sort by
-
Low-Complexity Deep HDR Fusion and Tone Mapping for Urban Traffic Scenes
-
- Journal Article
- A1
- open access
Efficient detection of crossing pedestrians from a moving vehicle with an array of cameras
-
- Conference Paper
- C1
- open access
Ego-motion estimation with a low power millimeter wave radar on a UAV
-
- Journal Article
- A1
- open access
Probabilistic fusion for pedestrian detection from thermal and colour images
-
- Conference Paper
- P1
- open access
Perception system based on cooperative fusion of lidar and cameras
-
- Journal Article
- A4
- open access
Haalbaarheid van veiligheidssystemen die gevaarlijke situaties vanop de fiets detecteren : onderzoek met behulp van LiDAR-technologie levert veelbelovende resultaten op
-
- Conference Paper
- P1
- open access
Automatic labeling of vulnerable road users in multi-sensor data
-
- Journal Article
- A1
- open access
Cooperative multi-sensor tracking of vulnerable road users in the presence of missing detections
-
Detecting vehicles’ relative position on two-lane highways through a smartphone-based video overtaking aid application
-
- Conference Paper
- P1
- open access
Weakly supervised deep learning method for vulnerable road user detection in FMCW radar