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Syntactically annotated corpora are highly important for enabling large-scale diachronic 

and diatopic language research. Such corpora have recently been developed for a variety 

of historical languages, or are still under development. One of those under development 

is the fully tagged and parsed Corpus of Historical Low German (CHLG), which is 

aimed at facilitating research into the highly under-researched diachronic syntax of Low 

German. The present paper reports on a crucial step in creating the corpus, viz. the 

creation of a part-of-speech tagger for Middle Low German (MLG). Having been 

transmitted in several non-standardised written varieties, MLG poses a challenge to 

standard POS taggers, which usually rely on normalized spelling. We outline the major 

issues faced in the creation of the tagger and present our solutions to them.  
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1. Introduction 

 

Corpora of historical texts annotated with different levels of grammatical information, 

such as parts of speech, (inflectional) morphology, syntactic chunks, clausal syntax,  

provide an important resource for studies of diachronic syntactic variation and change 

(e.g. Kroch et al. 2000, Rögnvaldsson & Helgadóttir 2011). They enable the automatic 

extraction of syntactic information from historical texts (more than is manually 

possible), and allow making statistically valid observations. Apart from reducing the 

amount of time required for data retrieval, an important advantage is that they make 

research testable and replicable. The Corpus of Historical Low German (CHLG) 
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Text Box
accepted pre-publication version



(Breitbarth et al. 2011, 2012) is in the process of becoming a corpus of syntactically 

parsed texts of Old Low German (OLG)/Old Saxon and Middle Low German (MLG). 

The corpus will facilitate – currently still urgently lacking – research into the diachronic 

syntax of Low German, a language that is geographically and linguistically located 

between High German in the south(east) and Dutch and Frisian in the north(west), and 

hence still forms a missing link within Continental West Germanic (CWG). Eventually, 

the CHLG Corpus will fill the recently growing ranks of a family of parsed historical 

corpora including the Penn Parsed Corpora of Historical English (Mitchell et al. 1993), 

the Tycho Brahe Parsed Corpus of Historical Portuguese (Brito et al. 2002), the parsed 

corpus of historical French Modéliser le Changement: Les Voies du Français (MCVF) 

(Martineau 2005) and the Icelandic Parsed Historical Corpus (IcePAHC) (Wallenberg et 

al. 2011).  

The OLG stage being completed (Walkden 2016), the work is currently focusing 

on the MLG stage. As the corpus is intended to serve as an important resource for the 

study of syntactic variation and change, it will be annotated with syntactic information. 

The first step in this syntactic enrichment of the corpus consists in the assignment of 

parts-of-speech tags to every word in the corpus. Tools to automatically assign high-

accuracy POS tags are freely available for a variety of languages, but they rely on large 

amounts of annotated training data. Those that have been trained on contemporary 

varieties of text tend to suffer a drop in performance when applied to older varieties and 

adapting them for use on historical language remains challenging (Moon & Baldridge 

2007, Bennett et al. 2010). We adopt a data-driven approach to POS tagging in which 

we try to overcome the issues of small datasets with considerable corpus-internal 

diatopic, diachronic, stylistic, and spelling variation, and pay particular attention to the 

choice of rich linguistic features, the choice of a robust machine learning algorithm, and 

the potential benefit of using genetic algorithms to optimize the feature space.  

In this paper, we report on the work leading to the creation of such an optimized 

part-of-speech tagger for MLG. We present the current design of the corpus and give an 

overview of the language to offer an idea of the difficulties one has to deal with when 

creating a corpus of an under-researched, naturally non-standard, historical language. 

We compare our own way of working to a background of methods and standards from 

related work on corpora concerning the same period or geographical area. Subsequently, 



we present the experiments and results of the research on the creation of the automatic 

POS tagger. We also describe the role of normalization and of fine-grained inflectional 

morphology in potentially improving the tagger’s accuracy.   

In Section 2, we outline related work that has been carried out in projects similar 

to CHLG with a special view on the development of POS taggers. Section 3 will present 

the current set-up and aims of the CHLG corpus, highlighting the premises of the 

current text selection and the subsets thereof used for work on the tagger. Section 4 

presents the methodology and the set-up of the experiments, the results of which are 

discussed in Section 5. Section 6 addresses further experiments showing how spelling 

normalization and the addition of morphological information can further improve the 

accuracy of the tagger. Section 7 concludes this paper. 

 

 

2. Related work on historical corpora of German 

 

Building a historical corpus is a task that essentially involves dealing with the same 

difficulties as building a synchronic corpus, such as issues of size, representativeness, 

sampling, etc. (Biber et al. 1998, Bennett et al. 2010). In contrast to synchronic corpora, 

however, diachronic corpora are restricted by the character of the written attestation of 

the language, which is typically limited as regards the amount and genres of text 

transmitted. Furthermore, they often lack a standardized orthography, complicating in 

particular automated processing such as POS tagging. In order to provide a background 

for the discussion of creating a POS tagger for the CHLG, the current section discusses 

previous work on similar corpora of historical varieties of (Low) German and other 

languages, and the computational tools associated with them.  

 

 

2.1 Other varieties of historical Low German 

 

Linguistic and particularly syntactic research on Middle Low German has been limited 

due to a lack of digitized data that can be searched easily. While there have been several 

efforts to create corpora of Middle Low German, none of them involved syntactic 



annotation. The Atlas spätmittelalterlicher Schreibsprachen des niederdeutschen 

Altlandes und angrenzender Gebiete (AsnA) (Peters & Fischer 2007) and the Atlas 

Spätmittelalterlicher Schreibsprachen des ostniederdeutschen Raumes (AsoR) 

(Bieberstedt 2015) had as their main goal to create a resource enabling research into the 

variation between the MLG scribal languages over time, especially at the level of 

spelling and semantics. The Atlas is therefore not readily suited for syntactic research, 

aside from the fact that is not yet publically available. The project 

Textverdichtungsprozesse im Spätmittelalter (Textual compacting 

processes/complexification in the late Middle Ages) at Paderborn University (Tophinke 

2009, 2012; Tophinke & Wallmeier 2011) explored, first transcribed and partially 

annotated MLG legal texts to trace the formal development of linguistic 

complexification in MLG, as well as its dynamics, speed, and regional spread. The 

project, however, has a narrow focus on legal texts.  

The only project comparable to the CHLG in aims and methods (covering the 

diachronic, diatopic and stylistic variation of MLG), except for the syntactic annotation, 

is the Referenzkorpus Mittelniederdeutsch und Niederrheinisch (ReN) (Peters & Nagel 

2014, Schröder 2014). The aim of the ReN is the creation of a corpus of transcribed, 

lemmatized and grammatically annotated texts from 1200 until 1650. The grammatical 

annotation consists of POS and inflectional morphology, but not syntactic parsing as is 

the aim for the CHLG. The POS and morphological tagging of the ReN was assisted by 

RFtagger (Schmid & Laws 2008), built into the CorA annotation tool, and manually 

corrected by two annotators. While distinguishing itself by its speed, RFtagger has the 

disadvantage of being inflexible when it comes to adapting parameters for optimization 

based on features of the texts. Its current accuracy for POS tagging MLG texts is 

between 83.9% and 90% in-domain (trained on and applied to the same text) and 

between 69.3% and 73.5% out-of-domain, depending on the data set (Barteld et al. 

2015). The CHLG works closely together with the ReN for the POS and morphological 

annotation of the texts contained in both corpora, but uses more adaptive automated 

taggers, as reported in more detail in Section 4 below.  

 

 

2.2 Related language varieties of the same period and geographical area  



 

In contrast to MLG, for which digitized data is scarce, and linguistically annotated 

corpora even more so, different corpora have already been built for historical varieties 

of High German, such as the Referenzkorpus Altdeutsch 

(www.deutschdiachrondigital.de), the Referenzkorpus Mittelhochdeutsch (Dipper 2015) 

(http://referenzkorpus-mhd.uni-bonn.de), the Bonn corpus of Early New High German 

or Bonner Frühneuhochdeutschkorpus (Diel et al. 2002, Fisseni et al. 2007) 

(https://korpora.zim.uni-duisburg-essen.de/Fnhd), the GerManC corpus  (Scheible et al. 

2011a, 2011b) (www.llc.manchester.ac.uk/research/projects/germanc) and the German 

Text Archive or DTA (Geyken et al. 2011) (www.deutschestextarchiv.de). 

The annotated Referenzkorpus Altdeutsch covers older varieties of German, viz. 

Old High German and Old Saxon (Old Low German), and aims to cover all currently 

surviving texts in Old German from 750 to 1050 AD. It comprises around 650,000 

words from texts (mostly from editions) digitized within the TITUS project. The largest 

subset of the corpus consists of translations from Latin and mixed German-Latin texts 

(Linde & Mittmann 2013), primarily religious ones. The Referenzkorpus Altdeutsch 

was semi-automatically pre-annotated with information extracted from grammars and 

glossaries. The layers of annotation involve metadata (e.g. genre, origin, period), 

structural information (lines, paragraphs, sentences, words, etc.), POS, inflectional 

morphology, and syntactic information. All word forms were lemmatized. Some POS 

tags could be automatically extracted by comparing tokens to a list with existing 

glossaries and some morphological features belonging to them (e.g. conjunctions). The 

inflectional information was extracted partly automatically, but only if the grammar 

provided enough information, for instance for the strong verb classes.  

The Bonner Frühneuhochdeutschkorpus covers the period from 1350 to 1700 

with one (relatively short, ca. 400 words) text from each of the seven fifty-year time 

slots and ten regional varieties (covering Upper and Central German). The only POS 

tags (in the “typ” attribute to the “wortform” tag) are “substantive”, “adjektiv”, “verb”, 

“unbekannt” (unknown) or “potentiell” (for contextually undecidable forms). Besides, 

there is morphological information (Diel et al. 2002). The GerManC corpus covers the 

period from 1650 to 1800 in 50-year increments and includes five regional dialects 

(North, West Central, East Central, West Upper and East Upper German). Its size is 



about 1,000,000 tokens with the sampling done by taking three extracts of 2,000 words 

per genre, period and region. Gold standard annotations for lemmas, POS tags and 

normalized spelling were added to a representative subset of the corpus. The DTA 

covers a comparable period of Early Modern German (1650 - 1900). The selected texts 

were automatically tokenized, lemmatized, and POS tagged.  

Choosing a POS annotation scheme is crucial for any annotation project, but this 

especially holds for diachronic corpus projects, because of the dynamicity especially in 

word classes prone to grammaticalisation (e.g. prepositions, non-finite verb forms and 

pronouns). In the case of GerManC, a well-established tagset for Modern German – the 

Stuttgart-Tübingen Tagset (STTS) (Schiller et al. 1995) – was adapted to reflect specific 

phenomena in Early Modern German. Six new tags were added to the tagset. Overall, 

the inter-annotator agreement on the POS task was 91.6%. (Scheible et al. 2011a, 

2011b). The POS annotation in the Referenzkorpus Altdeutsch on the other hand uses 

the DDDTS tagset (Deutsch Diachron Digital tagset), which is likewise based on STTS. 

Similar to HiTS (Dipper et al. 2013), it uses two-level annotation (the lemma and the 

concrete realisation as instantiated by the word form) so as to capture language change.  

 

 

3. The Corpus of Historical Low German  

 

The Corpus of Historical Low German was conceived to foster linguistic and 

particularly syntactic research on Middle Low German. In this section, we provide some 

background on the language (Section 3.1), specify the purpose of the corpus (Section 

3.2) and present the corpus design (Section 3.3).   

 

 

3.1 Middle Low German 

 

Middle Low German (MLG) was the language spoken in northern Germany from about 

1150 until 1600 and replaced Latin as the written language from about 1300 onwards 

(Peters 2003). Between 1550 and 1650, its position as the written language in the area 

gradually waned in favour of Early New High German. The language, however, still 



exists as a spoken language (Modern Low German/Plattdeutsch), i.e. as a group of 

dialects without full standardization. Nevertheless, the MLG period saw a certain 

amount of levelling of regional variation. During the 14th century, several regional 

scribal languages/regionale Schreibsprachen emerged (Peters 1973, 2003; Sanders 

1982), which incorporated characteristics from the surrounding dialects. MLG gained 

importance as the international lingua franca around the North and Baltic Seas in the 

14th and 15th centuries, in connection to the expansion of the Hanseatic League of 

trade. Through this expansion, it also noticeably influenced several other languages, in 

particular the mainland Scandinavian languages (Braunmüller 1996, 2002).  

 

 

3.2 Purpose of the corpus 

 

One of the most important issues in corpus construction is to determine the purpose for 

which it is going to be used. The main purpose of the CHLG is to enable research of 

diachronic and geographical variation in historical Low German syntax and 

morphology. Therefore, for the MLG part of the corpus, texts from all the main scribal 

languages, covering the whole period of attestation (c. 1300 – 1600), and only texts that 

are dated and localised will be included in the corpus (Section 2.3). For the text 

selection, as well as the POS and morphological tagset (see Section 3.3 below), there is 

a close collaboration with the Referenzkorpus Mittelniederdeutsch und Niederrheinisch 

(ReN) mentioned in Section 2.1 (Peters & Nagel 2014, Schröder 2014). Part of the texts 

(both in ReN and CHLG) were transcribed within the ASnA project, while others come 

from the project Niederdeutsch in Westfalen, and some were newly transcribed. While 

the ReN only annotates for POS and morphology, the CHLG is currently adding 

syntactic parsing, following the Penn Treebank system to ensure interoperability with 

related corpora such as the PPCHE or the IcePAHC.  

 

 

3.3 Corpus design  

 



In order to enable geographical and diachronic research, it is desirable that all the texts 

in the corpus be dated and localized. So far, we included texts belonging to three 

different text types meeting this condition: charters, legal texts, and (medical and 

religious) prose. This makes the corpus balanced concerning scribal language as well as 

concerning genre. The texts also have to cover the whole period in which MLG was 

written, that is c. 1300 - c. 1600. Thanks to the economic and political importance of 

MLG in this period, many texts were produced and have survived, making it possible to 

cover MLG attestation in the corpus without significant gaps. Furthermore, CHLG 

includes texts from the three main scribal languages of MLG: Westphalian, Eastphalian 

and North Low Saxon. Five data point clusters spread out throughout the language area 

were selected, three from the Altland (west of the Elbe) and two from the Neuland (east 

of the Elbe). Texts from Münster, Herford, Rüthen and Soest represent Westphalian in 

the Altland. Braunschweig (Eastphalian, Altland), Magdeburg (Elbe Eastphalian, 

Neuland), Oldenburg (North Low Saxon, Altland) and Lübeck (North Low Saxon, 

Neuland) complete the corpus. The CHLG hence only covers texts from the present-day 

German area; MLG texts localized outside this area, e.g. in the mainland Scandinavian 

language area or the area of the eastern Baltic Sea, are not included, because of the even 

greater distance (than in the core MLG language area) between the written MLG and the 

languages spoken in these areas. Table 1 enumerates details about the texts that are 

included in the corpus so far. The total number of words will be around 722,000. For the 

POS experiments reported in the current paper, only Westphalian texts were used 

(55,777 words in total), as discussed in Section 4. The reason for this restriction is that 

the research reported here is embedded into a project on domain extension. 

 

Table 1. Details of current texts selected for inclusion in the CHLG 

Place Scribal language Genre Period/year Name Number of 
tokens 

Soest Westphalian 
(Altland) 

legal texts c. 1367 Soester Schrae 8,241 

Herford Westphalian 
(Altland) 

legal texts 1375 Herforder 
Rechtsbuch 

16,227 

Rüthen Westphalian 
(Altland) 

legal texts 3 parts: c. 1300, c. 
1350, 1460-1500 

Statuarrecht 
Rüthen 

6,804 

Münster Westphalian 
(Altland) 

religious 
prose 

1444 Spieghel der leyen 24,505 

Münster Westphalian religious 1480 Dat myrren ca. 91,000 



(Altland) prose bundeken 
Münster Westphalian 

(Altland) 
charters 14th - 15th c. Urkundenbuch 

Münster 
ca. 95,500 

Oldenburg North Low Saxon 
(Altland) 

charters 14th - 15th c. Oldenburger 
Urkunden  

28,241 

Oldenburg North Low Saxon 
(Altland) 

legal texts 1336 Oldenburger 
Sachsenspiegel 

24,377 

Lübeck North Low Saxon 
(Neuland) 

charters 13th - 15th c. Urkundenbuch 
Lübeck 

ca. 179,000 

Braunschweig Eastphalian 
(Altland) 

charters 13th - 15th c. Urkundenbuch 
Braunschweig 

ca. 81,000 

Magdeburg Elbe-Eastphalian 
(Neuland) 

charters 13th - 15th c. Magdeburger 
Urkundenbuch  

ca. 39,000 

Magdeburg Elbe-Eastphalian 
(Neuland) 

medical 
prose 

1483 Promptuarium 
medicinae 

ca. 128,000 

Total     ca. 722,000 
 

Summing up, other corpora of historical varieties of (Low) German and related 

languages cannot readily be compared to the CHLG concerning the computational tools 

used. Only the ReN, with which the CHLG is collaborating, uses similar tools and 

methods. The main advantage of the CHLG over the ReN approach to POS tagging, as 

we will show in the next section, is that we use a machine learning approach with a 

customisable feature space. This allows us to make full use of the bare data for training. 

It means that, in comparison to projects such as Referenzkorpus Althochdeutsch, we 

have more freedom, as there is no need to compare to existing lists of word/grammatical 

phenomena. Moreover, it allows us to make use of the detailed transcription and thus to 

circumvent issues of non-standard spelling. 

 

 

4. Methodology 

 

In order to find an efficient way to produce a POS enriched corpus of MLG, we 

experimented with different part-of-speech taggers to automatically assign POS 

information to the word forms in the corpus and evaluated their performance both with 

respect to accuracy and robustness. In this section, we motivate the choice of tagset, 

discuss the different types of experiments we set up and specify the experimental data 

on which the taggers were trained and tested.   

 



 

4.1 Tagset 

 

We used an existing tagset specifically designed for historical German rather than trying 

to derive one from the data by bootstrapping/unsupervised learning as done in particular 

for MLG by Sukhareva & Chiarcos (2016), as our goal was not development of a new 

tagset, but of a POS tagger with as high an accuracy as possible. 

For the annotation, we made use of the CorA annotation tool (Bollmann et al. 

2014), a web-based annotation tool specifically developed for tagging historical and 

non-standard languages. We used an adaptation of the above-mentioned HiTS tagset 

(Historisches Tagset) (Dipper et al. 2013), the HiNTS (Historisches Niederdeutsches 

Tagset) developed specifically for MLG by the Referenzkorpus 

Mittelniederdeutsch/Niederrheinisch (https://vs1.corpora.uni-hamburg.de/ren/).	Table 2 

illustrates the mapping between STTS, from which HiTS is derived, HiTS, and HiNTS. 

Being derived from HiTS, HiNTS is rather close to HiTS, but in case of any differences, 

HiNTS tends to be more fine-grained and suited to the MLG situation.  

 

Table 2. Mapping between STTS for German, HiTS for historical German and HiNTS for MLG 

STTS tags HiTS tags HiNTS tags 
ADJA, ADJD ADJA, ADJD, ADJN, 

ADJS 
ADJA, ADJD, ADJN, 
ADJS, ADJV, 
ADJA<VVPS, 
ADJD<VVPP, 
ADJV<VVPP 

ADV, PWAV AVD, AVG, AVNEG, 
AVW 

AVD, AVNEG, AVREL, 
AVW, AVKO 

APPR, APPRART, 
APPO 

APPO, APPR APPO, APPR 

CARD CARDA, CARDD, 
CARDN, CARDS 

CARDA, CARDD, 
CARDN, CARDS 

ART, PDAT, PDS, 
PIAT, PIDAT, 
PPER, PRF 

DDA, DDART, DDD, 
DDN, DDS, DIA, 
DIART, DID, DIN, NIS, 
PPER, PRF 

DDA, DDART, DDN, 
DPDS, DIA, DIART, DID, 
DIN, DPIS, DNEGA, 
DNEGD, DNEGN, 
DPNEGS, PPER, PRF 

DRELS, PRELAT, 
PRELS 

DRELS DRELA, DRELN, 
DPRELS, 

PPOSAT, PPOSS DPOSA, DPOSD, DPOSA, DPOSD, DPOSN, 



DPOSGEN, DPOSN, 
DPOSS 

DPOSS 

PWAT, PWS DWA, DWD, DWN, 
DWS 

DWA, DWD, DWN, 
DPWS 

FM FM FM 
ITJ ITJ ITJ 
KON, KOUS, 
KOKOM, KOUI 

KO*, KON, KOUS, 
KOKOM 

KO*, KON, KOUS, 
KOKOM, KOUI 

NN, NE NA, NE NA, NE, NA<VVINF 
PTKA, PTK, 
PTKANT, 
PTKNEG, PTKVZ, 
PTKZU, APZR, 
TRUNC 

PTKA, PTKANT, 
PTKINT, PTKNEG, 
PTKREL, PTKVZ 

PTKA, PTKN, PTKANT, 
PTKNEG, PTKVZ, 
PTKZU 

PAV, PWAV PAVAP, PAVD, PAVG, 
PAVREL, PAVW 

PAVAP, PAVD, PAVREL, 
PAVW, PAVKO, 
PAVKON 

VAFIN, VAIMP, 
VAINF, VAPP, 
VVFIN, VVIMP, 
VVINF, VVIZU, 
VVPP, VMFIN, 
VMINF, VMPP 

VAFIN, VAIMP, 
VAINF, VAPP, VAPS, 
VVFIN, VVIMP, 
VVINF, VVPP, VVPS, 
VMFIN, VMIMP, 
VNINF, VMPP, VMPS 

VAFIN, VAIMP, VAINF, 
VAPP, VAPS, VVFIN, 
VVIMP, VVINF, VVPP, 
VVPS, VMFIN, VMIMP, 
VNINF, VMPP, VMPS 

 

To assess the quality of the tagset, two annotators with a solid background in historical 

linguistics both annotated independently a dataset of 3,003 tokens from Soester Schrae 

and 3,005 for Statuarrecht Rüthen. The former enumerates the city’s laws and the latter 

describes the statutes of the inhabitants of Rüthen. Though from different cities, both 

texts belong to the same scribal language (Westphalian). After that, the inter-annotator 

agreement (IAA) was measured, the errors discussed and some agreements on doubtful 

tags were created. The pairwise average IAA for Soester Schrae was 91.4% or 0.908 

Fleiss Kappa. The corresponding scores for Statuarrecht Rüthen were 92.2% and 0.924. 

Both the high accuracy scores and the Fleiss Kappa scores thus show an almost perfect 

agreement.   

 

 

4.2 Standard experimental set-up  

 



It is crucial for the success of a part-of-speech tagger that it has access to highly 

informative textual information in order to obtain good performance. This textual 

information typically consists of specific information on the linguistic unit under 

consideration (in our case, a token) and its manually annotated class (part-of-speech 

tag). This information is presented to the machine learner (discussed in Section 4.3) in a 

fixed format, so-called feature vectors, which ideally contain all possible 

disambiguating information to allow the learner to differentiate between different POS 

classes. We relied on two types of features, viz. so-called standard features which are 

typically used in the construction of POS taggers and a set of custom features, which 

seek to describe the specificity of the XXX data. The following standard features were 

implemented, an example of which is shown in Table 3: 

 

i. Is the first letter capitalized? (binary feature); 

ii. Does it contain a digit? (binary feature); 

iii. Is it punctuation? (binary feature); 

iv. Is it hyphenated? (binary feature which checks for hyphens and dashes, but 

also for markers of separate and compound writing, e.g., ghe#delet ); 

v. Word length (numeric feature); 

vi. First n letters (bigram, trigram);  

vii. Last n letters (bigram, trigram); 

viii. Lowercase form of the token (symbolic feature). 

 

In addition to this, the POS tagger also relied on three corpus-specific features: 

  

i. A series of binary paratext features which check for notes, corrections, and 

expansions of certain collapsed forms. More specifically, these features encode 

whether the token includes editorial marks of the following types: interlinear 

notes or corrections, editorial additions, notes or corrections in one of the 

margins, interlinear expansions or expansions in one of the margins, 

abbreviation expansions, strikethrough text, etc. For instance, in p{R_er}sonen 

(persons), R_ indicates that an abbreviated form has been expanded;.  



ii. A binary feature which checks whether the token is Vortmer. This token 

frequently marks the beginning of a new sentence or section, even in the 

absence of other start- and end-of-sentence markers. E.g. UOrtmer . So wanne 

eyn claghe vor den rayt ku+omet [...] (furthermore, whenever a complaint 

before the council comes […]);. 

iii. A binary feature which checks whether the token contains brackets, e.g., 

h(er)uorde (Herford). 

 

For our experiments, we evaluated the performance of two different learning 

frameworks: memory-based learning and conditional random fields. Both learning 

methods can be described as classification-based supervised learning and have been 

shown to perform well on the task of part-of-speech tagging compared to decision-tree 

classifiers, Hidden Markov Models, etc. (e.g. Daelemans et al. 1999, Lafferty et al. 

2001). The supervision lies in the fact that the learners are trained on the basis of 

annotated data. These data are manually annotated with POS information, which is 

taken from a predefined set of possible POS categories. During learning, both learners 

take as input training instances consisting of feature-value pairs (e.g. the standard and 

custom features as described above), followed by the annotated classification of that 

particular instance (as shown in Table 2). For the MBL classifier, the feature vector of 

each token includes a context window for every token, which consists of two tokens to 

the left and two tokens to the right. For CRF++, it is not necessary to include the local 

context in the feature vector, because CRF uses a feature template to instruct the learner 

to look at the labels of the tokens to the left and the right of the focus token. An 

example of such a feature vector is given in Table 3.   

 

Table 3. Feature vector for the MBL classifier for the training sentence “MEn lest an der ol=den 

rethorica tu=liii.”* 

% % MEn lest an 0 0 1 0 0 0 0 3 me en men men men DPIS 
% Men lest an der 0 0 0 0 0 0 0 4 le st les est lest VVFIN 
MEn lest an der ol=den 0 0 0 0 0 0 0 2 an an an an an APPR 
lest an der ol=den rethorica 0 0 0 0 0 0 0 3 de er der der der DDAR 
TA                   
an der ol=den rethorica tu=lii 0 0 0 0 0 1 0 6 ol en ol= den ol=den ADJA 
der ol=den rethorica tu=lii . 0 0 0 0 0 0 0 9 re ca ret ica rethorica FM 
ol=den rethorica tu=lii . $.$ 0 0 0 0 0 1 0 6 tu ii tu= lii tu=lii FM 
rethorica tu=lii . $.$ % 0 0 0 0 1 0 0 1 . . . . . $; 



tu=lii . $.$ % % 1 0 0 0 1 0 0 3 $. .$ $.$ $.$ $.$ !!ED!! 
* The feature vector for the CRF classifier does not incorporate the first two columns nor the fourth and 

fifth column. 

 

Memory-based learning (MBL) algorithms are called ‘lazy learners’ because they 

perform no generalization on the instance base they are trained on (Daelemans & van 

den Bosch 2005). All the instances are stored in memory, and new instances are 

classified by comparing them to the instance base, for example with a k-nearest 

neighbour algorithm. When a k-value of 1 is used, the classifier labels an unseen 

instance with its closest neighbour in the instance base. Various distance and feature 

weighting metrics can be used to determine which neighbour is closest. For larger 

values of k, some voting mechanism has to be applied to choose one class label from the 

nearest neighbours set. For our experiments, we used the MBL algorithms implemented 

in the TIMBL software package.   

A Conditional Random Field (CRF) is a probabilistic classifier that is used to 

segment and label sequential data (such as a series of tokens), which makes it especially 

suitable for natural language processing tasks like part-of-speech tagging. Lafferty et al. 

(2001), for example, show that CRFs beat related classification models as well as 

HMMs on the POS tagging task. Similar results were recently obtained by Van de 

Kauter et al. (2013) for English, Dutch, French and German POS tagging and by 

Silfverberg et al. (2014) for English, Finnish, Czech, Estonian and Romanian.  

CRFs take an input sequence X with its associated features, and try to infer 

hidden sequence Y, containing the class labels. For our experiments, CRF++ version 

0.57 was used. The classifier takes as input a template file that specifies the 

combinations of features it needs to consider. It also has a choice of several 

hyperparameters through which the behavior of the classifier can be tuned: a choice of 

regularization algorithm, balance between overfitting and underfitting, a cut-off 

threshold for feature frequency, and the number of threads (in case multi-threading is 

used).  

 

 

4.3 Experimental data 

 



We used three separate datasets for the evaluation: the texts Soester Schrae (henceforth 

Soest), Statuarrecht Rüthen (henceforth Rüthen) and Herforder Rechtsbuch (henceforth 

Herford). The three texts belong to the same genre (legal texts) and the same regional 

scribal variety (Westphalian (Altland)), but since language was not standardized during 

this period, the common scribal dialect only means that each city might have adopted 

features from the language of the regionally dominant city, Münster in this case. This is 

important for our purposes, because it means that a tagger trained on one city might still 

suffer from a performance drop when applied to another city. As the data sets are small, 

each has been split only into a train set and test set (80% for training and 20% testing), 

as presented in Table 4.  

 

Table 4. Training and testing instances (tokens) for each dataset 

 Training instances Testing instances 
Soest 6,593 1,649 
Rüthen 5,427 1,377 
Herford 12 968 3259 
  

An analysis of the tag distribution of the different train sets (Figure 1) shows that even 

though Rüthen is the smallest set, it contains the largest number of categories, which 

makes it the most sparse one (i.e. there are multiple categories for which there are few 

instances for the classifier to generalize from). One of the main objectives for the tagger 

is that it needs to be robust to different kinds of input that may or may not conform to 

standard spelling. 

 

PLEASEINSERT FIGURE 1 HERE 

Figure 1. Tag distribution in the three training sets. The pink color refers to tags that do not 

occur in a given dataset. The darker the blue values, the higher the occurrence of a given tag in a 

given dataset  

 

We already explained that the transcription scheme of the texts in the CHLG and the 

ReN projects often adds a lot of information to a token, e.g.: 

  

su{R_n}der 

vor#deghe=dinghen 



*ON_15* 

\FU_wesselere{R_n}\ 

 

This kind of transcription encodes the appearance of certain features of the manuscript, 

such as whether the lexical item is located in the main text, as super- or subscript, or in 

the margins. It may also indicate abbreviations in the text and to what lexical item they 

expand. Furthermore, it allows the original form of the manuscript to be recovered, 

which may provide important additional information, for instance where sentence 

boundaries are not clear – a common challenge in historical texts. However, the 

drawback of this transcription is that it is not very readable. This is why the POS 

annotation tool CorA offers two manners of representing the token, as the original 

transcription or as a simplified token without the transcription markers: 

 

su{R_n}der —> sunder 

vor#deghe=dinghen —> vordeghedinghen 

*ON_15* —> 15 

\FU_wesselere{R_n}\ —> wesseleren 

 

While in a normal resource-rich situation the simplified UTF8 spelling would offer less 

noisy input for the machine learner, we hypothesized that in a low-resource setting 

some cases of ambiguity might be resolvable with the additional information that the 

rich transcription offers. 

We therefore prepared the datasets in three flavours with the purpose of 

establishing what would be the most informative input. The first dataset, called TRANS, 

consists of the token in its original transcribed form. The second dataset, called UTF8, 

takes the token in its UTF8 form as input, without additional annotation. The third 

group, TRANS_UTF8, presents the learner the transcription token and also the UTF8 

form token as a feature. 

 

 

5. Results and discussion 

 



We conducted several experiments to assess the accuracy and robustness of the part-of-

speech tagger for Middle-Low German. As a first step, we trained both MBL and CRF 

POS taggers for each city and tested them on data from the same city. In order to 

determine the cross-city robustness of the different city taggers, we gradually increased 

the training data and evaluated on each of the three city data sets. To have a clear view 

on which textual information was most helpful for tagging, we also performed feature 

selection using a wrapper-based genetic algorithm search methodology. Once having 

determined the optimal data set size (of course, taking into account the data we have at 

our disposal) and the optimal feature set, we conducted another experiment, in which 

we evaluated the performance of the tagger on another genre, viz. religious prose.  

Finally, we applied normalization in order to establish if the tagger can benefit from 

more regularized spelling.  

 

 

5.1 In-domain experiments 

 

In the first set of experiments, taggers were developed for each city using the two 

different learners TiMBL and CRF++, which were applied in their standard 

experimental parameter set-up for each of the three formats of the data (TRANS, UTF8 

and TRANS_UTF8). The taggers were then tested on the 20% test data available for 

each dataset. We calculated two baselines (Table 5): a first baseline for which the most 

frequent tag from the training data (“NA” for all datasets) was taken as classification for 

all instances, and a second look-up baseline in which the tag for a given test token was 

looked up in the training data. For the latter baseline, we only report the best look-up 

baseline for the three varieties of the data sets.  

 

Table 5. Baseline results  

 Most frequent tag Look-up 
Soest 14.33 80.90 
Rüthen 13.15 68.93 
Herford 18.42 80.1 
 



The results in Table 6 show that in comparison with CRF++, the TiMBL learner 

performs much worse on the Soest and Herford datasets (difference of around 5 

percentage points) and slightly worse on the Rüthen dataset. Interestingly, the results on 

Soest and Herford are also up to 15% higher than those on Rüthen, which is likely 

caused by the higher sparsity of the latter dataset. Both systems show the best 

performance on the Soest TRANS_UTF8 set, and the Rüthen and Herford UTF8 sets. 

 

Table 6. In-domain experimental results 

TiMBL 
 Transcription UTF-8 Transcription + UTF-8 
Soest 82.65 83.14 83.26 
Rüthen 71.24 73.05 72.11 
Herford 81.09 82.26 82.11 

CRF++ 
Soest 87.62 87.38 87.68 
Rüthen 73.56 74.58 73.85 
Herford 85.54 86.37 86.25 
 

 

5.2 Cross-city robustness 

 

Given that POS taggers are trained on specific data sets, such as the above-mentioned 

Soest, Rüthen and Herford data sets, their models will typically also perform well on 

data with the same characteristics as the training data on which they based their models. 

In other words, a POS tagger trained on Soest would likely perform best on other texts 

from Soest. As it would require significant time and resources to produce manually POS 

annotated data for each single city, genre, etc., it is crucial that the developed tagger 

does not exhibit major performance drops when applied on unseen data. 

In order to evaluate the out-of-domain robustness of the POS tagger, we 

conducted a set of cross-city experiments. The main objective was to find out what 

works best for our classifier: training on in-domain data or on a more diverse data set 

which incorporates a variety of material from different cities. In other words, is it better 

to have a small specifically tailored corpus, or does adding more data from other cities 

lead to a more robust and accurate tagger? We again trained POS taggers using the two 

learning frameworks and conducted 3 sets of experiments: 



  

i. In a first set of experiments, we applied the already-trained single-city 

POS taggers on each of the other cities in order to compare the cross-city 

robustness of the taggers to their in-city performance. The robustness of 

the classifier was thus evaluated by exclusively training the classifier on 

out-of-domain data; 

ii. In the second set of experiments, we added in-domain data to one of the 

out-of-domain datasets, thus increasing the number of training instances 

and also incorporating in-domain knowledge;  

iii. In a third experiment, all available data were used for training. 

 

Table 7. Cross-city robustness when training classifiers on out-of-domain data* 

TiMBL 
 Soest Rüthen Herford 
 Trans 

 
UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
Soest 82.65 83.14 83.26 64.34 65.14 65.35 66.70 67.96 67.41 
Rüthen 74.71 75.01 73.19 71.24 73.05 72.11 68.42 69.83 69.07 
Herford 72.95 73.49 74.77 67.53 68.91 68.33 81.09 82.26 82.11 

CRF++ 
 Soest Rüthen Herford 
 Trans 

 
UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
Soest 87.62 87.38 83.68 63.76 64.48 63.25 71.80 72.84 72.59 
Rüthen 80.04 80.41 79.65 73.56 74.58 73.85 74.13 75.85 75.29 
Herford 78.65 79.01 78.65 70.00 71.38 70.37 85.54 86.37 86.25 
* The grey results represent the in-domain experiments 

 

Table 7 gives an overview of the cross-city robustness of the taggers that are 

exclusively trained on in-domain data. The columns indicate the text a tagger was 

trained on, the rows show the performance of that tagger on the test data, both from the 

same text (grey figures) and the two other texts (black figures). As expected, taggers 

perform worse on out-of-domain data, except for Rüthen, the smallest sub-corpus, for 

which the benefit of having more data outweighs that of having in-domain data.  

In the second set of experiments (Table 8), we increased the training data with 

one out-of-domain set. When doing so, all three taggers increase in accuracy, the 

smallest gain being for the Rüthen dataset. Evidently, the results are lowest when no 



training data from the city under consideration are added. The CRF classifier also 

consistently outperforms the MBL classifier.  

 

Table 8. Cross-city robustness when training classifiers on both in-domain data and one out-of-

domain data set*  

TiMBL 
 Soest Rüthen Herford 
 Trans 

 
UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
S+R 83.68 83.74 83.99 72.11 73.78 73.27 70.57 72.13 71.46 
R+H 79.32 79.86 79.44 73.49 75.74 74.87 81.37 82.60 82.54 
S+H 83.92 84.71 84.83 70.51 71.67 71.02 81.55 83.15 82.72 

CRF++ 
 Soest Rüthen Herford 
 Trans 

 
UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
Trans UTF8 Trans+ 

UTF8 
S+R 88.17 88.29 88.11 75.23 75.67 75.52 77.10 78.12 77.47 
R+H 84.11 85.56 84.41 76.47 78.35 77.48 87.17 87.26 87.14 
S+H 87.93 88.65 88.72 73.20 75.45 73.85 86.19 86.86 86.89 

* S = Soest, R = Rüthen, H = Herford 

 

Adding all training sets (Figure 2) brings about the best results. When we compare the 

results in Figure 2 to the in-domain results in Table 6, we can observe a performance 

increase of 5% for all three datasets. Still, the results for Rüthen are the lowest, due to 

the combination of small size and a varied tagset.  

 

PLEASE INSERT FIGURE 2 HERE 

Figure 2. Performance on the three city datasets when all training data is used  

 

 

5.3 Feature informativeness 

 

As it is not immediately clear which features are more informative than others and what 

combinations work best, we performed feature selection using a wrapper-based 

approach exploiting genetic algorithms. There are different ways to select the optimal 

features for our POS task. One possible methodology consists in exhaustively testing all 

feature combinations, which is computationally very intensive. Another methodology 



starts from one single feature and incrementally adds other features (forward selection) 

as long as this leads to performance increases or alternatively, starts from the full 

feature set and removes features one by one (backward elimination). A combination of 

these two directional search strategies is so-called bi-directional hillclimbing. A 

powerful alternative for feature selection which avoids searching the full feature space 

and at the same time is not bound by a certain search directionality, are genetic 

algorithms which start their search at different points in the search space (a so-called 

initial population) and seek the optimal feature combination through fitness-based 

selection (which individuals score best?) and operators such as mutation and cross-over 

to mutate and combine fit individuals into new generations.  

We chose the latter approach to learn what features and learner hyperparameters 

lead to the optimal city tagger (Soest, Rüthen, Herford). Thus, for each learner (CRF++ 

and TiMBL) we performed joint optimization on each city with each dataset type, 

resulting in nine experiments per learner. All optimization experiments were performed 

using the Gallop toolbox (Desmet & Hoste 2013). Gallop provides the functionality to 

wrap a complex optimization problem as a genome and to distribute the computational 

load of the GA run over multiple processors or to a computing cluster. It is specifically 

aimed at problems involving natural language. We set the initial population to 100 

individuals set to run for 100 generations. The optimal features were based on the entire 

80% dataset, validated with 5-fold cross-validation. The best fitness scores on the cross-

validation data are reported in Table 9.  

 

Table 9. Optimized in-domain experimental results (cross-validation) 

TiMBL 
 Transcription UTF-8 Transcription + UTF-8 

Soest 86.65 86.7 86.77 
Rüthen 83.07 83.58 83.49 
Herford 85.66 86.38 86.38 

CRF++ 
Soest 87.64 87.79 87.76 

Rüthen 84.52 85.07 84.85 
Herford 86.69 87.65 87.57 

 

Although these cross-validation results cannot be directly compared to the results 

reported in Table 6, we can observe that CRF++ again achieves higher fitness values 



than TiMBL for each city. Our main goal, however, was to determine which textual 

features improve tagging accuracy.  

When analysing the results of the optimization, we followed Desmet (2014) and 

De Clercq (2015) and examined not only the one individual with the best fitness score, 

but also the individuals with the closest scores. For that procedure, we ranked the fitness 

scores and aggregated the best scores into five bins, based on the fitness score rounded 

to the fourth digit after the comma. Those individuals that had identical selected 

features and fitness were removed, so that only unique entries were analysed. In the 

resulting set of optimal feature sets, we noticed that on some occasions optimal fitness 

was reached when certain features were selected and sometimes when they were not. 

Given the small and varied datasets, we decided on three tiers of inclusion: features 

which were always selected, features which were selected more than 70 per cent of the 

time, and features which were selected between 50 per cent and 70 per cent of the cases.  

 

Table 10. Selected features in the best individuals*  

CRF++ 
Soest 

trans tok parat vort cap dig punc leng pr2 s2 pr3 s3  bra  
utf8 tok parat vort cap dig punc leng pr2 s2 pr3 s3 hyp bra  
trans 
utf8 

 parat vort cap dig punc leng pr2 s2 pr3 s3 hyp  low 

Rüthen 
trans tok parat vort cap dig  leng pr2  pr3 s3 hyp bra  
utf8 tok parat vort cap dig   pr2 s2 pr3 s3 hyp bra  
trans 
utf8 

 parat vort cap dig punc leng  s2 pr3 s3 hyp  low 

Herford 
trans tok parat vort cap dig  leng pr2 s2 pr3 s3 hyp bra  
utf8 tok  vort cap dig punc leng pr2 s2 pr3 s3 hyp bra  
trans 
utf8 

 parat vort  dig punc leng pr2 s2 pr3 s3 hyp bra low 

Features which are selected consistently (100%) 
Features which are selected more than 70% 
Features which are selected between 50% and 70% 
* tok = token, para = paratext,  vort = vortmer, cap = capitalization, dig = digit, punc = punctuation, leng = 

length, pr2 = bigram prefix, s2 = bigram suffix, pr3 = trigram prefix, s3 = trigram suffix, hyp = hyphen, 

bra = brackets, low = lowercase 

 



Table 10 gives an overview of the selected features for the CRF learner that performed 

best on the three datasets. There are a number of conclusions we can draw: while the 

prefix, suffix, digit and length features seem to be consistently selected, this is less the 

case for the vortmer, capitalisation, punctuation, hyphen and bracket features.  

 

 

5.4 Cross-genre robustness 

 

We took the best-performing tagger and applied it on a fully unfamiliar dataset, the 

Spieghel der Leyen from Münster. As the dataset contains religious prose, albeit from 

the same regional scribal language, it differs sufficiently in style and vocabulary. The 

first 5,000 tokens of the text were manually tagged. Against these manual tags, we 

compared the automatic tags produced by three taggers: 

 

i. the best non-optimized combined UTF8 tagger;  

ii. an optimized version of the best tagger, where the features were 

selected through the genetic algorithm on the basis of the entire 

combined dataset of Soest, Rüthen and Herford, and;  

iii. a version of the best tagger where the features were manually selected 

on the basis of the best features for each individual city tagger (Soest, 

Rüthen or Herford), as determined through the genetic algorithm. The 

UTF8 tagger was chosen, because of the three configurations 

(TRANS, UTF8 and TRANS_UTF8) UTF8 performs best on average 

across all experiments. 

 

The non-optimized tagger tags with an accuracy of 75.93% but when optimized on the 

basis of the combined dataset, the performance on the new data drops nearly 1.5% to 

74.63%. This indicates that the optimization on the basis of all datasets combined leads 

to overfitting. However, for the third tagger, we manually chose features from among 

the best-scoring taggers for each individual city. As each city benefitted from a different 

set of features, we went for the most salient ones (above 70%). Thus, the resulting 

tagger has more relaxed conditions and the accuracy in the out-of-domain dataset rises 



to 77.11%. This is an improvement of 2.5% over the restrictive tagger and 1.2% over 

the non-optimized one. The features that were chosen manually are the token itself, 

capitalization, digit, hyphenation, brackets, word length and prefixes and suffixes with a 

length of 2 and 3 characters. 

 

 

5.5 Error analysis 

 

In order to have an overview of the remaining errors made by the best optimized tagger 

on the out-of-domain Spieghel der Leyen dataset, we manually checked whether there 

was any systematicity in the committed errors (Table 11). Overall, we observed two 

trends: problematic items are either tagged as one of five high-level tags (noun = NA, 

finite full verb = VVFIN, attributive adjective = ADJA, adverb = AVD, and preposition 

= APPR) or tagged as a semantically related category.  

There are a number of labels that often occur instead of a small set of gold 

standard labels. Proper nouns, adjectives (ADJA, ADJS, ADJV), adverbs, finite verbs, 

infinitives, foreign material, and non-words are often falsely tagged as common nouns 

(NA). Proper and common nouns are commonly mistagged as infinitives. 

 

Table 11. Frequent tagging errors 

Gold Standard tag Incorrectly allocated tag 
NE NA 
ADJA  
ADJS  
ADJV  
AVD  
FM  
VVFIN  
VVINF  
NE VVINF 
VVFIN  
NA  
NA VVFIN 
OA  
PAVD AVD 
AVREL AVD 
PAVAP APPR 



KO* KOUS 
OA !!ED!! 
 

The most interesting cases are those in which the classifier makes a decision that makes 

sense semantically, but which affects the accuracy negatively because of the granularity 

of the tagset. For example, the tagset distinguishes between a tag for most types of 

adverbs (AVD) and a separate tag for relative adverbs (AVREL). The classifier often 

“erroneously” uses the more general AVD tag to also tag relative adverbs, which is 

counted as an error. Another example for the latter case is the group of pronominal 

adverbs. These adverbs take the form of discontinuous morphemes with one 

prepositional part and one pronominal part, and each part has a separate tag. For 

instance, in Example (1) below the clause: 

 

(1) dar dit bok nicht af ne spricht 

(“about which (matter) this book does not speak”,  

lit. “there this book NEG about NEG speaks”) 

(Sachsenspiegel) 

 

dar is the pronominal part and needs to tagged with PAVD, and af is the prepositional 

part and needs to be tagged with PAVAP. What happens in reality is that the 

prepositional part is tagged as a preposition (APPR) and the pronominal part PAVD - as 

an adverb AVD. This means that the classifier correctly disambiguates the function but 

does not account for the fact that those are two parts of a multi-word expression. This 

can be explained with the fact that PAVD occurs only ten times in the combined 

training data, but much more often in the Spieghel der Leyen religious prose dataset. 

Something similar happens when tagging conjunctions. The tagset distinguishes 

between coordinating conjunctions (KON), subordinating conjunctions (KOUS), and 

KO* which marks a conjunction (coordination or subordinating) which is a part of a 

multi-word expression. KO* does not appear at all in the training data, yet the tagger 

recognizes the respective tokens as conjunctions when it encounters them in the 

Spieghel der Leyen out-of-domain data. It tags those consistently as subordinating 

conjunctions KOUS. 

 



 

6. Improving tagging accuracy: The impact of spelling normalization and 

morphological information  

 

In order to explore what information could further improve the tagger, we set up two 

more experimental groups: one testing the contribution of spelling normalization to 

accuracy, and one testing the contribution of fine-grained morphological annotation. 

Part of the corpus has been labeled with fine-grained morphological tags, which give 

information about the inflection of each word (if applicable). Examples of inflectional 

categories in the tagset are: tense, mood, number, gender, case, etc. We use this 

morphologically annotated subset of the corpus to perform both of the aforementioned 

experimental tests (normalization and morphological analysis), so that we can compare 

directly how much each of them contributes to POS tagging accuracy. 

 

 

6.1 Corpus subset and baseline 

 

To create the training data for these experiments, two annotators independently tagged 

each of our core texts (Soest, Rüthen and Herford) and differences in the annotations 

were reconciled, resulting in three documents of the following sizes: Rüthen = 6,784 

annotated tokens2, Soest = 2,904 tokens, Herford = 5,367 tokens. We combined these 

three datasets into one, of which the training partition consist of 80% of each tagged 

text and the testing partition of the remaining 20%. This ensures that instances from 

each scribal dialect are present both in the training and testing partition. 

The baseline experiment was to retrain the tagger on the reduced dataset using 

the best features and hyperparameters established in the experiments so far. The 

accuracy for this setup is 86.16%, a number that will serve as a reference point for all 

experiments henceforth. This experiment will be referred to as P1. 

 

 

6.2 The effects of normalization on tagging accuracy 

 



Although the MLG dialects were standardized up to a certain level, the MLG writing 

languages still display a lot of variation between the languages and even within one 

writing language. Spelling variation in particular impedes the creation of the POS 

tagger, since this variation causes sparseness of the input data on which the tagger has 

to train. This is illustrated in Example (2) from the Statuarrecht of Münster, in which we 

see two consecutive cases of the verb sin (to be) in the 3rd person plural (present tense), 

which are both spelled differently (sint/synt).  

  

(2) […] al so vere als se da sint Synt se da nicht […]  

(“[…] as far as they are there. Are they not there, […]”) 

(Statuarrecht Münster) 

 

To deal with these shortcomings, many NLP projects that focus on historical varieties 

begin with a normalization step, either because they aim to use resources built for 

contemporary varieties, or because they aim to train their own models on the historical 

variety and need to reduce sparseness. A notable example of such a spelling 

normalisation tool is VARD (Baron & Rayson, 2008), which has proven to improve 

performance on syntactic text processing (e.g. Schneider et al. 2015, Yang & Eisenstein 

2016). VARD aids in bringing historical spelling closer to modern spelling which can 

lead to an improved performance of a contemporary POS tagger on historical text 

(Rayson et al. 2007). A similar experiment on our data with a state-of-the-art CRF 

tagger for German (Van de Kauter et al. 2013), however, revealed that all words were 

tagged as “Foreign Word”, making this approach unfit for our purposes. Our focus is 

thus on normalization prior to training a dedicated POS tagger on historical text, in 

order to reduce sparseness on the input tokens.  

There are two main approaches to normalization: rule-based approaches and 

data-driven approaches. The rule-based systems i.a. rely on mapping schemes from 

historical to modern spelling (e.g. VARD) or apply a Levenshtein similarity approach 

(Pettersson et al. 2013). While these rule-based approaches make the best use of expert 

knowledge, they typically need much work in order to become robust and developing 

them is time-intensive. Data-driven approaches, on the other hand, derive their 

knowledge from large amounts of normalized data. A recent popular data-driven 



methodology for normalization is the use of character-based statistical machine 

translation (Schulz et al. 2016, Pettersson et al. 2014), which partly overcomes the 

requirement for large amounts of data as the system works at the character level.  

Our main aim was to make the tagger as robust to spelling variation as possible 

and as independent from external resources as possible. That was achieved through the 

use of our special features such as brackets, editorial annotations, capitalization and 

character n-grams. After achieving the highest possible scores with that setup and 

feature experimentation, we constructed a normalization script that would help us assess 

how much more advantage normalization might give us. Given our rather small dataset, 

we opted for a rule-based normalization methodology. 

For the normalization script, written in Python, we defined a set of 26 rules and 

exceptions affecting about 60 spelling variants. Complementary variants were all listed 

with their number of occurrences and their relative frequencies. We decided to change 

each spelling variant to the most common complementary variant. In a next step, all the 

words containing a variant for which the rule applied were extracted to make sure the 

rule performed well. In that way, some exceptions were discovered and added to the 

script. An example of a rule with its exceptions is the orthographic variation in 

representing /e:/, for which the most common spelling is <ey>. The other possible 

spelling options, <ei> and <ee> are therefore changed to this spelling. There is 

however an exception that has to be added: if <ei> or <ee> are following a /b/ or /g(h)/ 

at the beginning of a word, the rule should not be applied, since in that case we are 

likely dealing with a syllable boundary after the prefix of the past participle, so between 

e and e or e and i (e.g. in beendet, “finished”). The script was tailored to the three texts 

used in the experiments, and all strings complying with a rule or exception rule in the 

script are affected. Normalization accuracy was not evaluated on other texts, since the 

main aim was to preprocess the three texts under study and measure the maximal 

improvement in POS tagging performance, given gold-standard normalization. 

When applying the normalization script to each city dataset in UTF8 form in its 

entirety, we note that the script affects 8.09% of the tokens in Soest, 7.70% of the 

tokens in Herford, and 13.22% of the tokens in Rüthen.  

 



Table 12. Effect of normalization on the three complete datasets, as expressed by token count 

and as percentage 

Complete dataset Dataset size 
(tokens) 

Normalized tokens 
(token count) 

Normalized tokens 
(percentage) 

Soest 8,241 667 8.09% 
Rüthen 6,784 897 13.22% 
Herford 16,228 1,250 7.70% 
 

For the experiments, normalization was applied on the reduced dataset as described in 

Section 6.1. Normalization affected 8.77% of the tokens in the training dataset, and 

8.88% of the tokens in testing. 

We evaluated two ways of applying the normalization: (i) by using the 

normalized token as a feature in addition to the original token, and (ii) instead of the 

original token. Moreover, we again used a setup with strict (probably overfitting) 

features and a setup with relaxed feature conditions, where the most suitable features 

were manually selected from each optimized city tagger. The four sets of experiments 

confirm that the relaxed set of features is at least as robust as the strict feature set. The 

results of the strict set experiments and the first relaxed set experiment are comparable 

to those of the non-normalized best tagger. Only the combination of a normalized input 

token and relaxed features brings about 1% improvement. 

 

Table 13. POS accuracy with different normalization setups 

 Strict feature set Relaxed Feature set 
 Norm. token 

as extra feature 
Norm. token 
instead 

Norm. token 
as extra feature 

Norm. token 
instead 

Reduced dataset 86.26 86.95 86.16 87.12 
 

An error analysis on the best normalized optimized tagger against the best non-

optimized tagger showed that for larger and less variable test sets (Soest and Herford), 

none of the normalized lexical items are tagged differently (i.e. if the non-normalized 

tagger tags correctly, so can the normalized one, and if the non-normalized tagger tags 

the item wrongly, so does the normalized). From this, we can draw the conclusion that 

given a sufficiently large dataset with less variable tags the tagger can cope with 

spelling variation. The errors that remain are the result of linguistic phenomena or 

inconsistencies in the tagset. 



 

 

6.3 The effects of morphological information on POS tagging 

 

Another possible way of improving tagging accuracy is by including fine-grained 

morphological information. There are different ways in which it can be obtained, and 

different ways in which it can be incorporated. With these experiments, we address two 

questions: (i) can morphological information improve POS tagging, and (ii) can POS 

information be used to generate accurate morphological annotation that can be used for 

further experiments? 

It is important to know that trying to generate POS and morphological 

information in one go from the data, like TreeTagger and other taggers using the STTS 

tagset do, leads to serious sparseness issues. While the POS-only tagset is under 100 

tags, a combined POS-and-morphology tagset grows to a size of nearly 500. This means 

that in a training document of less than 13,000 tokens, many of the tags would only be 

seen once. Indeed, when we experimented with predicting full tags from the token and 

features, the accuracy was only 70.4% on the test set. 

The first step in predicting POS is establishing an upper bound and estimating 

how much adding gold standard morphological information can help performance. We 

tested two setups in which the POS tag is predicted using the token, optimized POS 

features, and gold standard morphology. In setup C1, the morphology is incorporated 

into the feature vector by decomposing it into components (e.g. Neut, Fem, Dat, Gen, 

Sg, etc.) and coding the presence of each possible component with a binary value. In 

setup C2, on the other hand, the morphological information is coded as a string (e.g. 

Neut.Dat.Sg). When tested on the test set, the two experiments set the upper bound at 

91.40% and 90.65% for C1 and C2, respectively. This indicates that decomposing the 

morphological information into binary features is worthwhile. Predicting the POS from 

only the token and the gold standard morphology results in an accuracy of 87%, or no 

improvement over predicting POS from token and features only. 

The second step is predicting POS using predicted morphological information, in 

order to estimate how much deterioration in the reliability of the morphological 

information is acceptable before it impacts POS tagging accuracy. 



We predict morphology from two initial setups that we provisionally call M1 

and M2. In M1 we predict the morphological tag from the token, POS features and the 

gold standard POS tag with an accuracy on the test set of 79.1%. In M2 we predict it 

only from the token and POS features, achieving an accuracy of 75%. Using predicted 

morphological information from M1 (79% accurate prediction) together with only the 

token leads to a POS tagging accuracy of 86.2%. When using morphological 

information from M2 (75% accuracy), the POS tagging accuracy already drops to 80%, 

which is under the baseline that we established with P1. 

In a final set of experiments, we compare POS prediction when the input is 

token, POS features and predicted morphology from M1 and M2. The results are 

90.89% and 86.16%, respectively. Clearly, the first experiment, based on 79% correct 

morphology, nearly reaches our upper bound. 

While these morphological experiments constitute a proof of concept at this 

stage, the fact that imperfect predicted morphology is showing to have positive impact 

on POS accuracy opens up the path for more targeted work in this direction. 

 

 

7. Conclusions  

 

We reported on a data-driven approach to build a robust Part-of-Speech tagger for 

Middle Low German. We obtained an in-domain accuracy of up to 87.7% when 

evaluating on three datasets from different cities, all three belonging to the same genre 

(legal texts) and the Westphalian variety, but nevertheless showing considerable 

spelling variation. While a drop of performance was observed in the cross-city 

experiments, the best tagging results were obtained by adding both in-city and cross-city 

training data. In order to assess feature informativeness, we performed feature selection 

using a wrapper-based approach exploiting genetic algorithms, leading to the selection 

of a set of features such as bigram and trigram prefix and suffix features, which was 

consistently selected in the different experiments. As the tagger suffered from 

overfitting on the in-domain data, a more relaxed feature and hyperparameter setup was 

used for the remainder of the experiments. In a cross-genre robustness experiment on a 



religious prose dataset, we obtained a 77.1% accuracy and observed that part of the 

errors made sense semantically and were mainly caused by the granularity of the tagset.  

We also investigated the role of normalization and of fine-grained inflectional 

morphological analysis in potentially improving the tagger’s accuracy. To measure the 

impact of spelling normalization on tagging accuracy, a rule-based normalization script 

was written and two sets of experiments were conducted, viz. one in which the 

normalized token was added to the original token and one in which it replaced the 

original token. Interestingly and contrary to previous findings, we could observe that the 

tagger was quite robust to spelling variation. Finally, in a set of experiments in which 

we measured the impact of both perfect and predicted morphological information on 

POS tagging accuracy, we could observe that even imperfect predicted morphological 

information has a positive effect on tagging performance.  

Comparing our approach to earlier results reported for POS tagging MLG texts 

with RFtagger (Barteld et al. 2015), which only reached an accuracy of maximally 

75.7% ± 1.6, we can conclude that our approach compares favorably to the results 

reported earlier (but on different texts) both with respect to accuracy, flexibility and 

robustness.3 

 

 

Notes 

 

1. While it is possible to encode in the template that the CRF algorithm also looks at the tokens 

themselves (i.e. using true ngrams as opposed to label-ngrams), this is not the default CRF 

behavior and some exploratory experiments showed that it affects the accuracy negatively. 

 

2. The full text of Statuarrecht Rüthen. The number of tokens differs from the one reported for 

the POS experiments in the previous sections, because some retokenization occurred during the 

morphological annotation, particularly where clitics were concerned. 

 

3. Barteld et al. (2007) both train and test RFtagger within one domain concerning scribal 

language and period, namely two North Low Saxon prose texts (one religious, one literary) 

from around 1500 (1480 and 1502). Without regularization, the maximum accuracy of RFtagger 



trained on the other text applied to the other is 73.5% ± 1.9, with regularization, it is 75.7% ± 

1.6. 
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